Disentangling the Growth of Blockchain-based Networks by Graph Evolution Rule Mining

<u>Alessia Galdeman</u>, Matteo Zignani, And Sabrina Gaito

IEEE | Cosponsers ACM/ASA/CCF

D S A A 2022

Computer Science UNIVERSITY OF MILAN

Web3

A PARADIGM FOR A DECENTRALISED WEB

Over-centralization

Decentralization by blockchains

Computer Science Dept. @ UniMI

Web3

DATA IN A DECENTRALISED CONTEXT

DSAA — 13-16 October 2022 — Shenzhen, Cina

Computer Science Dept. @ UniMI

CONNETS Lab

Computer Science Dept. @ UniMI

CONNETS Lab

Background WEB3 PLATFORMS

Background GRAPH EVOLUTION RULES (GER)

Several models, mechanisms and measures have been proposed to describe the network growth

BUT

- They assume that the growth is guided by a single parameterized mechanism
- Identifying which mechanism plays a more important role is challenging

Graph evolution rules mining can detect evolutionary behaviors, while avoiding any a-priori mechanism

Computer Science Dept. @ UniMI

Background GRAPH EVOLUTION RULES (GER)

- Graph evolution rules mining is a frequency-based pattern discovery method that allows discovering frequent local changes occurring repeatedly throughout the network evolution
- A **GER** is composed of a precondition (body) and a postcondition (head)

Generally, a GER mining algorithm consists in two phases:

CONNETS Lab

Tuples recording that a source u_i performed an operation towards a destination u_j at timestamp t

Computer Science Dept. @ UniMI

- Each transaction is translated into a directed link from source node *s* to destination node *d* with timestamp, or edge label, *t*
- The obtained temporal graph is modeled as a sequence of snapshots

 $G_1 \to G_2 \to G_3 \to \ldots \to G_T$

A snapshot includes edges with a single timestamp

- GER profiles show the distribution over types of evolution rules for a given dynamic graph
- Comparing the GER profiles for different graphs it is possible to find similar evolutionary behaviors

Results

Quantitative

Steemit follow rules' set includes all open sea's and cryptokitties' rules Steemit transfer's set present a rule not seen in other sets

Computer Science Dept. @ UniMI

GER profiles WASSERSTEIN DISTANCE

GER profiles DISCUSSION

Computer Science Dept. @ UniMI

CONNETS Lab

Conclusions

Future works

Improve the performance of the state-of-the-art algorithms

Evaluate statistically the significance of the rules, for example though the introduction of a null model

More complete characterization of the growth of Web3 platforms

Computer Science Dept. @ UniMI

Thanks for your attention

References

¹ E. Scharwa"chter, E. Mu"ller, J. Donges, M. Hassani, and T. Seidl, "Detecting change processes in dynamic networks by frequent graph evolution rule mining," in 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016, pp. 1191–1196.