
Multi-user edge service orchestration based on Deep Reinforcement Learning

Christian Quadria,∗, Alberto Cesellia and Gian Paolo Rossia

aComputer Science Department, University of Milan, Via Celoria 18, Milano, 20133, Italy

A R T I C L E I N F O
Keywords:
DQN, Edge Computing, Optimization

A B S T R A C T
The fifth generation (5G) of mobile network offers a remarkable degree of flexibility to mobile
operators, enabling them to provide users with effective and tailored network services. Software
Defined Networking (SDN), Network Function Virtualization (NFV), and edge computing have given
the operator the opportunity to easily bring computational capacity to the edge and to support latency-
sensitive services. While 5G standards have defined the technological and architectural frameworks
to orchestrate services, finding effective resources management and QoS optimization policies is still
an open research issue.

In this paper, we propose an online orchestration methodology for a multi-user edge service. The
orchestrator goal is to simultaneously maximize the QoS, and minimize the amount of resources
needed.

We provide a mathematical formulation to compute an optimal offline policy and derive an online
approach based on a model-free Deep Reinforcement Learning (DRL) framework. As a novel feature,
the DRL agent action is modeled as a parametric combinatorial problem. A tailored multi-objective
reward function leads the agent towards an effective choice of parameters for such a model. Our models
are built, trained and fine-tuned by exploiting real data.

Extensive simulations in diverse scenarios show that our DRL online approach produces solutions
with small gaps to the optimal offline ones, enabling the operator to both save resources and grant the
users an adequate QoS level.

1. Introduction
The profound transformation of the mobile network in

the last decade has unleashed the potential to effectively
support a new class of mobile services [1, 2]. The fifth gen-
eration (5G) of mobile network exploits Software Defined
Networking (SDN) [3] and programmable data plane [4],
Network Function Virtualization (NFV) [5] technologies
and edge computing architectures to bring computational ca-
pability at the edge of the network [6, 7]. The technological
and architectural frameworks designed by standardization
bodies 3GPP and ETSI give mobile operators the opportu-
nity to support latency-sensitive services [8].

While standards provide all the required instruments,
functionalities and technologies to manage the life-cycle
of edge-based services, the decision process behind the
service orchestration is still an open research issue. The
edge environment is characterized by a limited amount of
available resources, stringent QoS requirements and high
spatio-temporal dynamics of the network conditions [9].
These issues are particularly challenging in the case of
session-based services that are characterized by stateful and
long-lived instances, and involve multiple users. Examples
of this type of services are multi-player online games and
video conferences, that require low delays, suitable band-
width, and fair Quality of Experience (QoE) among users.
In such an environment, service orchestration requires an

efficient decision mechanism, which operates in online fash-
ion to conciliate multiple conflicting objectives. Moreover,
the changing network conditions require the orchestrator

christian.quadri@unimi.it (C. Quadri); alberto.ceselli@unimi.it
(A. Ceselli); rossi@di.unimi.it (G.P. Rossi)

ORCID(s): 0000-0002-3608-8142 (C. Quadri); 0000-0002-0983-2706 (A.
Ceselli); 0000-0002-4937-7744 (G.P. Rossi)

to continuously monitor previously deployed instances and
potentially migrate them to enhance QoS or balance the load
of the edge servers. To target this issue, many existing works,
for instance [6], adopt heuristics and Mixed Integer Lin-
ear Programming (MILP) approaches. However, as shown
in [10], these solutions are tightly bound to very specific
systems, making their performance substantially decrease
even in slightly different contexts. Moreover, most of the
previous works do not consider the network dynamics over
time neither in the problem formulations nor in the proposed
algorithm solutions.

In this paper we propose a novel orchestration methodol-
ogy for a multi-user edge service based on model-free deep
reinforcement learning (DRL). DRL combines deep neural
networks and reinforcement learning for making decisions
in complex scenarios without prior knowledge. The orches-
trator we propose has to simultaneously take two decisions:
(i) when actually start servicing each user, once a request
is issued, and, (ii), which edge facility has to be assigned
to such a service. The assignment decisions can change over
time by simply migrating services among edge facilities. The
orchestrator takes into account the interaction of decisions
concerning different users and operates in an online fash-
ion, assuming no previous knowledge about future service
requests.

The paper contributions are the following.
• We provide a mathematical formulation to compute

an optimal offline policy, in terms of a generalized
assignment and scheduling problem with elastic ca-
pacities (eGAP) with a multi-objective function. It
aims to maximize QoS level while minimizing the
amount of resources required at the edge.

Quadri et al.: Preprint submitted to Elsevier Page 1 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

• We derive a model-free Deep Reinforcement Learning
(DRL) framework. It allows to produce orchestrator
decisions in a pure online environment, without as-
suming prior knowledge of regularities in data. As a
further novel feature, the DRL agent actions do not
directly produce decisions, but rather configure a para-
metric combinatorial problem, which is finally opti-
mized to produce decisions. A tailored multi-objective
reward function leads the agent towards an effective
choice of parameters for such a model.

• We show the effectiveness of our approach by mod-
eling a realistic multi-user edge service scenario, per-
forming extensive simulations and hyper-parameters
tuning.

The results show the effectiveness of the proposed ap-
proach in producing solutions close to the optimal ones. In
particular, with respect to an offline (a posteriori) optimal
solution, we are able to guarantee a high QoS level, while
using only a small amount of extra resources. Finally, our
DRL agent is able to adapt to different conditions in terms
of system load and service demand patterns.

The remaining of this paper is organized as follows: Sec-
tion 2 provides background information and related work.
Section 3 provides an overview of the use case scenario and
introduces the general architecture of the system. Section 4
presents the system model, while Section 5 provides the
mathematical formulation of the eGAP. In Section 6 the DRL
framework is presented in detail, including the modeling
of the observation state, the action implementation, and
the design of the reward function. In Section 8 the whole
experimental setting is presented. Section 9 reports the train-
ing and evaluation results. Section 10 provides an overall
discussion about the results, the limitations and strengths of
our framework, and the potential improvement points of our
work. Finally, Section 11 contains some brief conclusions.

2. Background and related work
Mobile edge computing (MEC) is considered a key

element for supporting delay-sensitive services in mobile
environment. However, the service management and orches-
tration at the edge is a challenging task due to the limited
amount of resources available and the high dynamics of
the edge environment. The authors of [6, 7, 11, 12] survey
the literature concerning resource allocation approaches by
considering a broad variety of use cases and showing the
main challenges for managing edge services.

Edge computing is widely used for offloading the compu-
tation to edge servers rather than performing tasks directly
on devices [13]. Task offloading is characterized by short-
lived executions of multiple independent requests performed
by single end devices, e.g. mobile phones, IoT devices, and
vehicles [14]. In this work, we focus on different types of
services that have the following main characteristics. First,
service instances are stateful, meaning that the internal state,
e.g., active connections and application-level information,

must be preserved over time and across instance migrations.
Second, the life span of a single instance is generally longer
than the execution time of an offloaded task, for example,
a gaming session can last several minutes or even hours.
During this time period, network conditions and system load
significantly change [9], and new service requests may ar-
rive. Therefore, resource allocation performed at deploying
time could be considerably sub-optimal given the system
dynamics and would require a tailored decision process.
Finally, each instance hosts a session that groups a small
set of geographically distributed users, e.g., a game session
of a multiplayer online game. This latter aspect must be
carefully considered during the decision process because the
overall QoS level of an instance strictly depends on the QoS
offered to users involved in that instance. In the following
we present the literature contributions related to this work
focusing on the different modeling approaches for multi-user
service orchestration problem, the proposed solution for the
online decision process, and the specific body of literature
about eGAP.

The provisioning of the aforementioned type of services
through edge computing infrastructures allows the service
providers to offer the best QoE as compared to the cloud-
based provisioning [15, 16]. Benamer et al. [17] present a
solution based on genetic algorithms for the game server
placement problem in Fog-based architecture. They provide
a MILP formulation aimed at minimizing operational costs
while guaranteeing an overall QoE for the players. Gao et al.
[18] propose an edge computing-assisted multiplayer cloud
gaming by modeling the decision process as a constrained
multi-objective optimization model. In particular, their work
focuses on minimizing both the maximal delay difference
among players and the operation costs simultaneously. To
solve their NP-hard problem, they propose a hybrid approach
based on DRL and a heuristic algorithm. Wang et al. [19]
consider a collaborative edge service placement (CESP)
problem jointly taking into account multiple costs (activa-
tion, placement, proximity, and co-location). CESP is proven
to be a polynomial-time reduction from the uncapacitated
facility location (UFL) problem. The authors present an
efficient algorithm based on iteratively solving a series of
minimum s-t cut problem instances. Tsipis et al. [20] present
a heuristic for solving the Social Interactivity-oriented Edge
Allocation (SIEA) problem. SIEA problem is based on the
widely studied capacitated facility location (CFL) prob-
lems [21]. In particular, the proposed solution explicitly
accounts for the communication costs between players and
edge-server and among edge servers. The resulting heuristic
(SIEA-) complexity is (|𝑃 |2|𝑆|2), where 𝑃 and 𝑆 are
the sets of players and edge-servers, respectively. However,
all these works do not consider the temporal dynamic of net-
work load, causing QoS variations, and service demand, i.e.,
new service requests and/or the termination of previously
allocated instances.

In general, dealing with limited resources at the egde is a
challenging task and requires tailored allocation and requests

Quadri et al.: Preprint submitted to Elsevier Page 2 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

scheduling policies to ensure the suitable QoE, while avoid-
ing system overload. Most of the available literature relies
on conventional approaches, as heuristics and MILP opti-
mization. Solutions for joint service placement and requests
routing in MEC environment based on randomized round-
ing [22], approximation algorithms [23, 19, 24] and game
theory [25] have been proposed. While the aforementioned
solutions work well in the environment they are designed
for, they are not able to easily adapt to new contexts without
incurring in a degradation of performances. Moreover, most
of the previous works only focus on a single metric, e.g., de-
lay [26], resources used [27], Quality of Service/Experience
[28, 29], or number of served requests [30]. Clearly, single
metric objectives produce high-quality solutions on a single
specific target, but do not give the opportunity to the service
provider to smooth the optimization, balancing with respect
to different competing metrics. Some recent works have
indeed considered multi-objective functions optimization
[31, 32, 33]. In particular, a recent work by Hazra et al. [34]
propose a solution for solving task allocation in Industrial
Internet of Things (IIoT) scenario. The problem formulation
considers a multi-objective function aiming to minimize
execution time and energy consumption. Nevertheless, the
formulation does not take into account task migrations due
to changing network/load conditions. In line with the men-
tioned recent literature, our goal is to optimize a multi-
objective function taking into account competing goals such
as QoS, resource usage, service request waiting time, and
network operational costs, which is suitable for efficiently
managing dynamic scenarios like multi-user edge services.

The recent introduction of Deep Reinforcement Learn-
ing (DRL), starting from the seminal work of Mnih et al.
[35], has given the opportunity to design new approaches
for online decision processes. DRL combines the well-
established reinforcement learning methods [36] with the
advanced techniques of deep learning, providing a powerful
framework for managing complex decision tasks. Luong et
al. [37] provide an overview of DRL approaches applied
to communications and networking. In this work, we apply
DRL to a collaborative service shared among a group of
users as in [18, 19], considering multiple instances of the
service which are independent of one another, rather than
a single one shared among all users. Schneider et al. [10]
propose a DRL solution for joint scheduling, scaling and
placement of edge services. In [38] a deep Q-network (DQN)
approach is used for solving a joint optimization problem
of service placement, workload scheduling, and resource
allocation to minimize service response delay. Our work
solves a similar problem, but we focus on the scheduling and
assignment of long-lived service instances, each one serving
a specific group of users.

Similarly to [39] we model our decision making pro-
cess by considering a finite set of actions. However, we
employ a more sophisticated algorithm for identifying and
implementing the action. It combines heuristics and exact
formulations as a combinatorial problem. More in detail,
a core optimization problem needs to be solved. From a

modeling point of view, at each point in time, it can be seen
as a variant of the elastic Generalized Assignment Problem
[40] (eGAP). The eGAP is NP-Hard, but general purpose
mathematical optimization solvers such as [41] are known to
be effective in its numerical resolution. In our case, one in-
stance of eGAP appears at each point in time, and decisions
over time are intertwined. It is the realm of Dynamic Facility
Location (DFL) problems. The issue of capacity scaling in
DFL has been discussed in the literature more recently [42].
DFL problems show in fact to be considerably more difficult
to solve than eGAP ones. Choosing capacity values in a
discrete set helps in reducing their modeling and resolution
complexity. Still, instances of realistic size can currently be
solved only by heuristics like [43].

3. Scenario
We consider a scenario in which a service provider offers

a latency sensitive service to a group of users. As discussed,
noticeable examples can be online multiplayer gaming and
video conferencing. An instance of the service is shared
only among a single group of users and remains active for
a certain amount of time, e.g., the entire game or conference
session. We assume that the group of users is fixed and
known in advance. We also assume that the location of
each user is known and provided by the base stations that is
serving the user. A request for a new service instance can be
issued anytime and enters a queue waiting for deployment.
To meet the QoS requirements, service instances are de-
ployed on edge facilities that provide suitable, albeit limited,
computing resources and lower communication delay as
compared to cloud facilities. Periodically, the service orches-
trator monitors the load of the facilities and selects a subset
of requests for deployment. In this setting, we assume that
the service provider can use the computing resources of the
edge facilities according to an elastic computing paradigm.
In particular, the service provider negotiates a certain level
of resources with the edge network operator. If the amount
of negotiated resources is not sufficient for handling the total
number of requests, the service provider can ask for some
extra capacity. In this case, the edge network operator will
charge the service provider a cost that is proportional to the
extra resource usage.

In this paper, we adopt the very general MEC-based
architecture on top of which any latency-sensitive service
can be deployed. In Figure 1 we report the general system
architecture. The system architecture is composed of three
layers. The physical network layer (bottom) includes the base
stations (BSs), which mobile users are connected to, and the
MEC facilities offering virtual computation capacity. The
orchestration layer (middle) is responsible for managing
the network and computing resources, deploying the service
instances, and controlling their life-cycle. The service layer
(top) is in charge of serving upcoming service requests
and cooperates with the orchestration layer to deliver the
required QoS. In Figure 1 two separate groups of users issue
their service requests. Each request includes the type of

Quadri et al.: Preprint submitted to Elsevier Page 3 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

Service provider

Physical Network

DB

A C

E
F

Service request

A B C

Service request

D E F

Requests queue

Service Orchestrator
Physical

Network Status

Deployment
Migration
Actions

Figure 1: System architecture overview.

service, the resource and QoS requirements, the group mem-
bership, and the position of each user within the group. Each
request is gathered by the service provider and placed in a
waiting queue. At fixed time intervals, the orchestrator gets
information about the physical network and queue status,
and selects the suitable deployment setting and migration
actions. The figure reports an example of the deployment
of two instances. Each member of a group interacts with
only one instance (dashed colored link) and QoS offered to
a user strictly depends on the quality of the communication
channel between the user and the MEC facility where the
service instance is deployed. The service orchestrator has
the responsibility of finding the most suitable deployment
strategy aiming at maximizing the offered QoS and mini-
mizing resource utilization. In the following, we present the
model of the system, the mathematical formulation of the
optimization problem, and the model of the DRL agent for
service orchestration.

4. System model
Formally, we assume that the system operates on a

discretized time frame, where = {1,… , 𝑇 } represents the
set of all the time slots of duration 𝜏. In real implementations,
this assumption does not produce loss of generality, as 𝜏 can
be chosen to be arbitrarily small.

In the following, we provide some details of the three
layers along with the formal notation we will be using
throughout the paper.
4.1. Physical network

The physical network consists of a set of base stations
𝐵 connected to a set of MEC facilities 𝐹 through backhaul

network [44]. The communication between a BS 𝑏 ∈ 𝐵
and a facility 𝑗 ∈ 𝐹 at time 𝑡 ∈ has a transmission
cost 𝑙𝑡𝑏𝑗 , which is proportional to the transmission delay and
varies according to the dynamics of the network load. Each
facility has a finite capacity that can be used by exploiting the
elastic computing paradigm. Each facility 𝑗 has two levels
of capacity, namely 𝑅𝑗 and 𝑅𝑗 . 𝑅𝑗 is the maximum level of
resources available at a facility 𝑗, while 𝑅𝑗(≤ 𝑅𝑗) represents
the amount of computation capacity that can be used without
suffering from extra costs. The gap between 𝑅𝑗 and 𝑅𝑗 is the
amount of extra capacity available at the facilities whenever
needed, e.g. to manage peak of traffic during rush hours. We
assume that the use of units of capacity above the 𝑅𝑗 level
has an extra cost 𝑜𝑗 .
4.2. Service layer

The service layer directly supports the end-users to cre-
ate an instance of the requested service. Throughout the
paper, we consider that a single service instance can be
shared amongst a group of potentially distributed users. This
is a very common setting in many application scenarios,
such as online gaming, virtual reality, for instance applied
to cultural tourism, and video conferencing. We also assume
that the service provider is aware of relevant data about the
users’ group. In particular, both the identity of users in a
group 𝐺𝑖 ∈ and their location, i.e. the BS to which they
are connected to, are available. As for a service request, we
define a generic request of a new service instance 𝑖 as a 4-
tuple ⟨𝜎𝑖, 𝛿𝑖, 𝐺𝑖, 𝑟𝑖⟩, where 𝜎𝑖 is the request creation time,
𝛿𝑖 is the service duration time (i.e., the amount of time the
service instance remains active),𝐺𝑖 ∈ is the group of users
requesting the new instance, and 𝑟𝑖 represents the amount

Quadri et al.: Preprint submitted to Elsevier Page 4 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

of resources needed for the service instance. We also define
𝐵𝑖 ⊆ 𝐵 to be the set of BSs servicing at least one user in 𝐺𝑖.The QoS level of a service instance 𝑖 deployed on a facility
𝑗 depends on the transmission costs, i.e., 𝑙𝑡𝑏𝑗 , between the
facility and the base stations 𝑏 ∈ 𝐵𝑖 that serve the group of
users in 𝐺𝑖. Most services adjust the QoS level to offer a fair
experience to all participants, even to the most critical one
[45, 46]. We formally model this issue by defining the cost
related to the assignment of an instance 𝑖 to a facility 𝑗 as

𝑐𝑡𝑖𝑗 = max
𝑏∈𝐵𝑖

ℎ
(

𝑙𝑡𝑏𝑗
)

(1)

where ℎ(⋅) is a generic function that maps the transmission
cost onto service QoS level, e.g., frame-per-second in online
games or bit-rate level for video streaming applications. Here
we are assuming that the service instance adapts the QoS
level to the highest transmission cost among the group’s
users; thus reducing transmission cost leads to an increase
in the QoS level for the whole group. In [45, 46] the main
goal is to maximize fairness by minimizing the difference
in response delay between pairs of players. However, that
can be made arbitrarily small by artificially penalizing users
with high QoS. Hence, the optimization target of [45, 46]
does not provide any guarantee about the overall QoS level,
which instead is one of the key performance indicators for
the service provider. Defining the QoS level as in Eq. (1)
allows us to take into account the overall quality of service
offered to the group of users, and consequently considering
the global QoS of all service instances as we will discuss in
Section 5. We assume that the number of QoS levels is finite.

Service requests do not need to be satisfied immediately;
they can be delayed, and the longer the delay, the lower the
QoE of the users. We simply define the queue waiting time
for a service request 𝑖, at time 𝑡, as the difference between
the current time 𝑡 and the request time 𝜎𝑖, i.e. 𝑞𝑡𝑖(𝜎𝑖) = 𝑡−𝜎𝑖,
𝑡 ≥ 𝜎𝑖.
4.3. Orchestration layer

The orchestration layer is responsible for the allocation
of physical network resources, the management of the ser-
vice instances life-cycle, and the monitoring of the allocated
resources, as well as the QoS of the running instances.
Moreover, this layer is in charge of managing the queue of
incoming service requests, denoted as 𝑄. We assume that
such a queue has finite capacity and all requests exceeding
the queue capacity are discarded.

Due to the fact that an instance is active for multiple time
slots, network conditions could change over time leading to
variations in the QoS level. Therefore, the deployment made
in the previous time slots may not be suitable in light of
the new network conditions. The orchestrator may decide
to move a subset of the running service instances from
one facility to another to improve QoS or to balance the
overall system load, i.e., thus reducing the extra capacity
costs. The migration of a service instance brings together
extra costs, mainly associated with the rise in control traffic
and with the transfer of VM-state between facilities. For

simplicity, we assume that the migration cost 𝑚𝑖 depends
on the service instance only, without considering the pair of
facilities involved in the migration.
4.4. Orchestration mechanism and goal

The orchestrator is in charge of selecting the amount of
resources to use at each facility, anytime. Furthermore, when
each service instance ⟨𝜎𝑖, 𝛿𝑖, 𝐺𝑖, 𝑟𝑖⟩ is issued, the orchestra-
tor decides whether to instantiate it immediately, starting
its service in a suitable facility, or delaying its activation.
Finally, the orchestrator may decide to migrate running
instances from one facility to another. The orchestrator takes
and implements its decisions at the end of each time slot,
managing the set of service requests issued in the time slot
as a batch.

The goal of the service orchestrator is to provide users
with the best possible QoS while optimizing the resource
consumption at the network layer. Clearly, offering high
QoS levels and minimizing resource usage are competing
goals and require careful service orchestration and life-cycle
management of instances.

5. Mathematical modeling
We formalize the problem of finding optimal orches-

tration plans using Mixed Integer Linear Programming
(MILP). Our MILP combines the structure of two families
of problems from the combinatorial optimization literature.
First, the main decision problem has an assignment nature:
each service instance must be allocated to one facility at
minimum cost. The overall load managed by each facility is
limited through capacity conditions. In our case these capac-
ities can be extended at a price. Such a structure is known in
the literature as the elastic Generalized Assignment Problem
(eGAP) [40], where the term ‘elastic’ refers to the possibility
of handling capacities in a flexible way. Second, like in
scheduling problems [47], activating all the service instances
at their request time might be infeasible or impractical: a
proper placement in time must be found for each of them,
together with a suitable migration pattern. Formally, our
generalized assignment and scheduling problem with elastic
capacities includes the following decision variables:

• 𝑥𝑡𝑖𝑗 ∈ {0, 1}: encodes the assignment of instance 𝑖 to
facility 𝑗 at time 𝑡;

• 𝑦𝑡𝑖 ∈ {0, 1}: encodes the migration of instance 𝑖 at time
𝑡;

• 𝑠𝑡𝑖 ∈ {0, 1}: represents the deployment of instance 𝑖 at
time 𝑡;

• 𝑣𝑡𝑗 ∈ ℕ: indicates the units of extra resources re-
quested on facility 𝑗 at time 𝑡.

For consistency, we assume each 𝑥𝑡𝑖𝑗 , 𝑦𝑡𝑖, 𝑠𝑡𝑖 fixed to 0 for each
𝑡 < 𝜎𝑖. The problem formulation is the following:

min
∑

𝑡∈

∑

𝑖∈𝑁

∑

𝑗∈𝐹
𝑐𝑡𝑖𝑗𝑥

𝑡
𝑖𝑗 +

∑

𝑡∈

∑

𝑗∈𝐹
𝑜𝑗𝑣

𝑡
𝑗 +

∑

𝑡∈

∑

𝑖∈𝑁
𝑚𝑖𝑦

𝑡
𝑖 +

∑

𝑡∈𝑇

∑

𝑖∈𝑁
𝑞𝑡𝑖𝑠

𝑡
𝑖

(2)
Quadri et al.: Preprint submitted to Elsevier Page 5 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

𝑠.𝑡.
∑

𝑡≥𝜎𝑖

𝑠𝑡𝑖 = 1 ∀𝑖 ∈ 𝑁 (3)

∑

𝑗∈𝐹
𝑥𝑡
𝑖𝑗 =

𝑡
∑

𝑡=𝑡−𝛿𝑖+1

𝑠𝑡𝑖 ∀𝑖 ∈ 𝑁,∀𝑡 ∈ (4)

𝑥𝑡
𝑖𝑗 − 𝑥𝑡−1

𝑖𝑗 ≤ 𝑦𝑡𝑖 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝐹 , 𝑡 ∈ (5)
∑

𝑖∈𝑁
𝑟𝑖𝑥

𝑡
𝑖𝑗 ≤ 𝑅𝑗 + 𝑣𝑡𝑗 ∀𝑗 ∈ 𝐹 ,∀𝑡 ∈ (6)

0 ≤ 𝑣𝑡𝑗 ≤ 𝑅𝑗 − 𝑅𝑗 ∀𝑗 ∈ 𝐹 ,∀𝑡 ∈ (7)
𝑥𝑡
𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝐹 ,∀𝑡 ∈ (8)

𝑦𝑡𝑖, 𝑠
𝑡
𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑁,∀𝑡 ∈ (9)

Our aim is to minimize the multi-objective function (2)
by taking into account the assignment costs, the amount
of extra resources required, the migrations costs and the
queue waiting time. Unlike [40], we do not consider under-
provisioning costs. We note that the assignment costs 𝑐𝑡𝑖𝑗in (2) account for the QoS level and, being a minimization
problem, the function ℎ(⋅) (see Eq. (1)) must be carefully
defined so the lower the assignment cost the higher the QoS
level, and vice versa. In Section 8.2 we provide a definition
for function ℎ(⋅) suitable for our service scenario. The con-
straint (3) guarantees that each service instance is deployed
once and also ensures that the deployment time is higher than
or equal to the request time 𝜎𝑖. The constraint (4) ensures
that only one instance is active in the system for the service
time interval, i.e. from its deployment and throughout the
𝛿𝑖 time slots up to the termination. The next constraint (5),
where we formally always assume terms 𝑥0𝑖𝑗 = 0, guarantees
the consistency of the assignments and migrations across
consecutive time slots. Finally, the constraints (6) and (7)
ensure that the capacity of the facilities is not exceeded,
even considering the extra capacity requests 𝑣𝑡𝑗 . Model (2)-
(9) serves for three purposes: first, in terms of descriptive
modeling, to formally state the problem we address; second,
to formalize the subproblem to be iteratively solved online;
third, when managed by general purpose solvers, to provide
a benchmark for the quality of our solutions in the experi-
mental part.

6. DQN modeling
The problem formulation presented in the previous sec-

tion is not suitable for online optimization; in fact, it re-
quires knowing in advance all the service requests over
the planning horizon. This is unrealistic even within very
short time frames. To overtake this limitation, we model the
orchestration of the service instances as a Markov decision
process (MDP) designing a solution based on DRL that uses
a simplified version of the optimization model to implement
the agent’s actions. In Figure 2 we show the overview of
the proposed orchestration framework in which the agent
observes the state (see Section 6.1) of the environment and
selects the next action (see Section 6.2) to perform. As a
result of the interaction, the environment changes its state
and provides the agent with a reward (see Section 6.4)
that encodes the goodness of the performed action. Each

Environment (t)

Action A(t) <𝜏𝑎, 𝜏𝑚, 𝜏𝑜>
(Section 6.2)

Action implementation
(Section 6.3)

Agent training

Next time-slot

Replay
memory

DRL State S(t+1)
(Section 6.1)

DDQN
Algoritm

Mini batch

Experience record
<S(t),A(t),r(t),S(t+1)>

Reward r(t)
(Section 6.4)

Policy update

Request
Queue

(Q)

Running
Instances

(I)

Environment (t+1)

DRL State S(t)
(Section 6.1)

DRL Policy (π)

Figure 2: Overview of the DRL orchestration framework. Red
arrows and boxes indicate the training process.

interaction with the environment is recorded and stored in a
finite replay memory from which mini-batches are sampled
to train the agent’s policy [35]. Similarly to [39], we carefully
model the action implementation (see Section 6.3) which
produces the actual deployment plans based on the status of
the environment and the selected action.

In the following, we detail the framework presenting the
modeling of states and actions space, reward function, and
finally we provide details about the proposed algorithm for
the orchestration of service instances.
6.1. State model

The following are the observable features of the system:
1. QoS levels: the normalized QoS histogram of the

running service instances;
2. MEC facilities occupation: the value representing the

capacity in use in the facility 𝑗 ∈ 𝐹 and normalized
w.r.t. 𝑅𝑗 ;

3. requests queue occupation: the percentage of the
queue occupation;

4. requests waiting time: mean waiting time of the re-
quests in the queue;

5. running instances elapsed time: the mean elapsed time
of each service instance currently active in the system;

6. running instances migration opportunity: the percent-
age of running instances that could benefit from mi-
gration, for instance, to improve their QoS level.

Such a state formulation allows to model a wide set of sce-
narios, because it does not strongly depend on specific sce-
nario’s parameters, (e.g., the queue size, the facility capacity,
the number of requests, and more). The only two relevant
parameters are (i) the number of MEC facilities and (ii) the
number of distinct QoS levels; they do not compromise the
generality of the model. In fact, the deployed number of

Quadri et al.: Preprint submitted to Elsevier Page 6 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

facilities per network operator is constant1 with respect to
the time interval of service provisioning; moreover, the QoS
discretization can be modeled in order to match a large set
of QoS requirements.
6.2. Action model

The goal of the agent at each time step is to choose the
best possible action given the state observation. According
to the problem formulation described in Section 5, the agent
has four types of decision variables: (i) assignment, (ii)
migration, (iii) over-provision, and (iv) scheduling. Unlike
the offline MILP formulation, which considers all time slots,
the DRL agent decides at each time slot and the result
affects the next time slot only. As a consequence, a few
simplifications can be brought to the problem. The first of
them is the elimination of the scheduling decision variables
as the DRL agent can only decide whether or not to admit
a queued service request. The decision making process can
be further simplified by considering batch admission, which
enables the agent to specify the number of requests to admit.
To this aim the admission threshold 𝜏𝑎 is defined whose
value represents the percentage of queued requests that are
selected to be instantiated.

A similar approach can be followed to decide about
migration. The agent sorts all running instances for tak-
ing a potential benefit from migration, i.e. reducing the
assignment cost. The gain in terms of QoS level deriving
from migrating at time 𝑡 the running instance 𝑖, which was
assigned to facility 𝑗 at time 𝑡−1, can be defined as follows:

𝑚𝑔𝑎𝑖𝑛
𝑖 = 𝑐𝑡−1𝑖𝑗 − min

𝑗
𝑐𝑡𝑖𝑗 (10)

Accordingly, a running instance may become a candidate for
migration if𝑚𝑔𝑎𝑖𝑛

𝑖 ≥ 0. Moreover, migration of an instance is
granted even when the same QoS level is maintained; in fact,
though it does not provide direct benefits to the users, it gives
the mobile operator the opportunity to ensure load balancing
among facilities. We note that Eq. (10) does not consider
the migration cost 𝑚𝑖 because it focuses on the potential
improvement in QoS only. However, the migration cost is
taken into account when the agent performs the selected
action and evaluates the costs and the benefits of each
potential migration (see Section 6.3). The agent chooses the
migration threshold 𝜏𝑚, which is defined as the percentage
of instances whose migration gain is non-negative. 𝑀 is
defined as the set of running instances selected for a potential
migration.

Finally, to complete the set of decisions to take, the
agent decides the amount of extra capacity it requires to
manage the currently running instances and those selected
for being instantiated. At each time step, the agent chooses
the over-provision threshold value 𝜏𝑜, which is defined as the
percentage of the available extra capacity, 𝑅𝑗 − 𝑅𝑗 .At each time step, the agent goal is to choose the suitable
combination of values 𝜏𝑎, 𝜏𝑚, and 𝜏𝑜, which represent the

1In this work we only consider a single operator, in a multi-operator
scenario, the number of MEC facilities could change employing resource
brokering systems, which is outside the scope of this study.

action parameters maximizing the long term reward. In order
to use a learning algorithm of the DQN family, the number
of combinations must be finite, and, as a consequence,
discrete values for each action parameter are imposed (see
Section 9.1) .
6.3. Action implementation

Given the values of action parameters, 𝜏𝑎, 𝜏𝑚, and 𝜏𝑜, the
action needs to be executed on the environment. We propose
an algorithm that combines a simplified formulation of the
problem in Section 5 and heuristics. The set of admitted
requests 𝐴 and the set of instances selected for potential
migration 𝑀 are found heuristically. For selecting service
requests to admit, we first sort the queued requests according
to waiting time 𝑞𝑡𝑖 in descending order and then we select
the first 𝑘𝑎 = ⌈𝜏𝑎|𝑄|⌉ requests. Analogously, for selecting
the running instances to migrate, we only consider instances
whose migration gain is non-negative, denoted as 𝐼𝑔𝑎𝑖𝑛, and
we sort them in descending order according to migration
gain value. Then, we select the first 𝑘𝑚 = ⌈𝜏𝑚|𝐼𝑔𝑎𝑖𝑛|⌉instances.

Instead, in order to assign the admitted requests to the
facilities, and decide which requests, amongst the running
instances, to migrate, we optimize a generalized assignment
problem, whose MILP formulation is the following. We keep
the decision variables 𝑥𝑖𝑗 ∈ {0, 1}, which encodes the
assignment of instance 𝑖 to facility 𝑗. The remaining decision
variables are fixed by the action parameter values chosen by
the agent. Therefore, the following become data:

• 𝚥(𝑖) ∈ 𝐹 : is the facility where running instance 𝑖 ∈ 𝑀
is currently deployed;

• 𝑐𝑖𝚥(𝑖): is the assignment cost, i.e., QoS level, if running
instance 𝑖 ∈ 𝑀 was not migrated;

• 𝑉𝑗 = 𝜏𝑜(𝑅𝑗 − 𝑅𝑗): is the amount of extra resources
negotiated on facility 𝑗;

• 𝑈𝑗 : represents the amount of capacity on facility 𝑗
which is used by running instances that are not se-
lected for migration.

Our formulation is the following:
min

∑

𝑖∈𝐴∪𝑀

∑

𝑗∈𝐹
𝑐𝑖𝑗𝑥𝑖𝑗 +

∑

𝑖∈𝑀
𝑚𝑖 ⋅ (1 − 𝑥𝑖𝚥(𝑖)) (11)

𝑠.𝑡.
∑

𝑗∈𝐹
𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐴 ∪𝑀 (12)

∑

𝑖∈𝑁
𝑟𝑖𝑥𝑖𝑗 ≤ 𝑅𝑗 + 𝑉𝑗 − 𝑈𝑗 ∀𝑗 ∈ 𝐹 (13)

∑

𝑗∈𝐹
𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝜌 𝑐𝑖𝚥(𝑖) ∀𝑖 ∈ 𝑀,𝜌 ≥ 1 (14)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐴 ∪𝑀,∀𝑗 ∈ 𝐹 (15)
the objective function (11) aims to (i) minimize the as-

signment costs, i.e., maximize the QoS, (ii) minimize the
extra resources demand, and (iii) minimize the migration
costs. We note that for each instance 𝑖 ∈ 𝑀 selected for
potential migration, the assignment variable 𝑥𝑖𝚥(𝑖) indirectly

Quadri et al.: Preprint submitted to Elsevier Page 7 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

encodes the migration. If its value is 1, it means that the
instance has not been migrated, on the contrary, if it is
set to 0, the instance 𝑖 has been moved to another facility
𝑗 ≠ 𝚥(𝑖). Constraint (12) guarantees that all service instances,
both admitted and selected for migration, are assigned to
exactly one facility. Constraint (13) ensures that the available
capacity is not violated, depending on both the resources
used by instances that are not selected for migration 𝑈𝑗 ,and the extra resources being requested 𝑉𝑗 . Constraint (14)
bounds the assignment cost increasing w.r.t. the current
assignment, which is controlled by the parameter 𝜌. This
constraint proves useful to avoid too strong penalization of
the running instances selected for migration in favor of new
instances. In our experiments, we set 𝜌 = 1, forcing the agent
to maintain the same QoS level.

The overall action algorithm is summarized in Algo-
rithm 1.
Algorithm 1 Action implementation

Input: Requests queue (𝑄), Running instances (𝐼), Ac-
tion (⟨𝜏𝑎, 𝜏𝑚, 𝜏𝑜⟩)
Output: Assignment plan ∀𝑖 ∈ 𝐴 ∪𝑀

1: 𝑘𝑎 ← ⌈𝜏𝑎|𝑄|⌉ ⊳ # admitted requests
2: Sort queued requests according to 𝑞𝑡𝑖 in descending order
3: 𝐴 ← get firsts 𝑘𝑎 requests in 𝑄
4: for 𝑖 ∈ 𝐼 do
5: Compute 𝑚𝑔𝑎𝑖𝑛

𝑖
6: end for
7: 𝐼𝑔𝑎𝑖𝑛 ← {𝑖 ∈ 𝐼|𝑚𝑔𝑎𝑖𝑛

𝑖 ≤ 0}
8: 𝑘𝑚 ← ⌈𝜏𝑚|𝐼𝑔𝑎𝑖𝑛

|⌉ ⊳ # potential migrations
9: Sort 𝐼𝑔𝑎𝑖𝑛 according to 𝑚𝑔𝑎𝑖𝑛

𝑖 in descending order
10: 𝑀 ← get firsts 𝑘𝑚 instance in 𝐼𝑔𝑎𝑖𝑛

11: Solve problem (11)-(15)
12: if Solution found then
13: Return {𝑥𝑖𝑗|𝑥𝑖𝑗 = 1}
14: else
15: Return ∅
16: end if

6.4. Reward function
We design the reward function taking into account three

components measured on the arrival state after the action ex-
ecution: (i) the QoS level offered to the deployed instances,
(ii) the amount of extra resources requested and (iii) the
waiting time of the requests in the queue. Formally, we define
the reward function as follows:

𝑟𝑡 = −
𝛼𝑞

∑

𝑖∈𝑁𝑡

∑

𝑗∈𝐹 𝑐𝑖𝑗𝑥𝑖𝑗
|𝑁𝑡|

+ 𝛼𝑜𝜏𝑜 + 𝛼𝑡

∑

𝑖∈𝑄 𝑞𝑡𝑖
|𝑄|

𝛼𝑞 + 𝛼𝑜 + 𝛼𝑡
(16)

where 𝑁𝑡 is the set of currently deployed instances and 𝑞𝑡𝑖 is
a normalized and clipped version of waiting time 𝑞𝑡𝑖 defined
as:

𝑞𝑡𝑖 =
𝑚𝑖𝑛(𝑡 − 𝜎𝑖, 𝛿𝑖)

𝛿𝑖
The coefficients 𝛼𝑞 , 𝛼𝑜, and 𝛼𝑡 adjust the balancing among
the three components. The first part of the numerator of (16)

accounts for the average QoS level offered to the deployed
service instances, the second part considers the selected
over-provision threshold and the last component is the av-
erage of the waiting time of the service requests currently in
the queue. The denominator normalizes the reward function.
According to (16), 𝑟𝑡 is bounded between -1 and 0, where
value -1 corresponds to the worst case reward, while value 0
encodes action’s optimality. In the case Algorithm 1 returns
an empty set, we set 𝑟𝑡 = −1 to provide the agent with
strong negative feedback about infeasible actions, e.g. too
many instances to deploy or insufficient negotiated capacity.

The reward function defined in Eq. (16) is derived from
the multi-objective function of the MILP formulation (see
Eq. (2) in Section 5), whose goal is to minimize the overall
costs of the service orchestration. In particular, the utopia
scenario would be that (i) all instances benefit from the best
QoS (i.e., lowest assignment costs) for all duration of the
session; (ii) no extra resources are required; (iii) no need
of migrations; and (iv) every request is immediately served.
The design of Eq. (16) follows the same principle as Eq. (2).
As a matter of fact, higher rewards correspond to solutions
approaching the utopia scenario more closely. Migration
costs are handled implicitly by solving the problem (11)-
(15)). In other terms, the proposed reward function guides
the agent toward the maximization of the QoS level, the min-
imization of the used extra capacity, and the minimization of
the request waiting time, while the action implementation
selects solutions of minimum migration costs. Moreover,
through the tuning of the coefficients 𝛼𝑞 , 𝛼𝑜, and 𝛼𝑡, the
network operator can adjust the importance of the different
components to train agents tailored to specific service/sys-
tem requirements. In Section 9 we analyze the performance
of the different configurations of the reward function.

7. Theoretical analysis
One of the key points in our approach is the refined

modeling of assignment, scheduling, migration and capacity
scaling over time. From a theoretical point of view, such a
choice comes at a price.

Observation 1. The offline problem of finding an optimal
orchestration plan is NP-Hard.

We reduce from the Generalized Assignment Problem (GAP).
In the GAP, a set of agents is given, each having a limited
computing capability; a set of tasks is also given, each
having a computing demand. A cost is associated to each
pair task-agent. The GAP consists in assigning each task to
an agent, in such a way that the sub of computing demands
of tasks associated to the same agent does not exceed its
capacity. The sum of assignment costs between each task
and the associated agent must be minimized. The reduction
works as follows. We consider a single time slot (|𝑇 | = 1):
each task is mapped to exactly one service instance 𝑖; each
agent is mapped to exactly one facility 𝑗. Task demands
are mapped to 𝑟𝑖 values; agents capacities are mapped to

Quadri et al.: Preprint submitted to Elsevier Page 8 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

𝑅𝑗 values. Extra capacities are set to 0 (i.e. �̄�𝑗 = 𝑅𝑗).Task-agent assignment costs are mapped to 𝑐𝑖𝑗 values. A
GAP optimal solution could then be found by mapping back
service instance assignments to facilities as task assignments
to agents. Similarly, we observe the following.
Observation 2. The optimization problem to be solved in
the DQN action implementation is NP-Hard.

The proof involves a similar reduction from the GAP, and is
therefore omitted.

In fact, these two observations justify the use of MILP
modeling and resolution methods. In particular, we rely on
the following result.
Observation 3. Our DQN action implementation resolu-
tion methods provide global optimality guarantees.

Such a result comes directly from the use of exact algorithms
for generic MILPs in our procedures. From a theoretical
point of view, in fact, such a quality guarantee needs to come
at the price of computing time guarantees, unless P = NP. We
additionally report the GAP to be APX-Hard [48]; therefore
there are no strong alternatives for obtaining arbitrary quality
guarantees. We can finally observe the following.
Observation 4. In the long term, our DQN method maxi-
mizes the reward function (16).
The optimization of such a reward function would indeed
come directly from the use of a Bellman equation on the
action-value function, if each action were associated to the
admission of a single service request. Our DQN action
merges a batch of service requests and, according to Ob-
servation 3, solves the corresponding subproblem to proven
optimality. The DQN action produced in this way is never
worse than a set of DQN actions taken on the single service
request admissions independently, since the latter provides
a feasible solution for the batch of service requests, but not
necessarily an optimal one.

We mention that, in order to solve the DQN action
subproblem (11)-(15), exact algorithms can be fine tuned
to have polynomial space complexity, but overall lead to
exponential worst case-time complexity as explained above,
thus defining the overall time and space complexity of our
methods. At the same time, general purpose MILP solvers
are known to be experimentally very effective [41]. Our tests
confirm this behavior, as we could always obtain proven
optimal solutions, and no optimization took more than a
few seconds. We also report that ad-hoc algorithms for the
GAP exist (both exact and heuristics) that are suitable for our
approach, and would further reduce the computational effort
for executing Algorithm 1 in large systems.

8. Environment setup
The resource orchestration method we just described has

been evaluated by means of a simulation environment that
models the system described in Section 4 and has been setup
on the base of real data (see Appendix B). As an example

Figure 3: Physical network topology

of latency sensitive application, we consider a multi-player
online game. This type of application has stringent latency
requirements, while keeps the data traffic very low, in the
order of 10-50 Kbps [49]. In the following, we provide
an overview of how the system parameters and the players
behavior have been defined.
8.1. Physical network

From a Call Detail Records (CDRs) dataset, which gath-
ers the phone activities of about one million subscribers [50]
and covers the metropolitan area of Milan, we collect a set
of 224 base stations within the metropolitan area of Milan,
together with their approximate GPS location, and we extract
the approximate location of subscribers with a granularity
of associated base station. The backhaul network and the
number and location of the facilities within the physical
network can only be hypothesized. To this aim, we assume
that the backhaul is organized in hierarchical rings, as in
[44]. In particular, each base station is connected to a M1
node and each M1 node can handle up to 6 base stations. M1
nodes are organized in access-rings which contain up to 6
M1 nodes each and are connected to the rest of the backhaul
network and to the core network via a M2 node which
handles up to 4 access-rings. We assume that the network
operator has deployed one MEC facility in each access-
ring; thus 7 MEC facilities are required to manage 224 base
stations. To properly reconstruct the backhaul topology we
apply a modified version of the k-mediods algorithm, where
we impose a maximum number of points in a cluster. We
first associate base stations to M1 nodes and subsequently we
create the access-rings. The resulting medioids represent the
locations of the MEC facilities. Figure 3 shows the resulting
physical network topology, where each area represent a base
station obtained from the Voronoi tessellation, the red dots
are the facilities, and the color indicates the access ring the
a base station belongs to.

To model the communication costs between base sta-
tions and facilities, we assume that the variation of delays is
caused by background traffic of other services using the same

Quadri et al.: Preprint submitted to Elsevier Page 9 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

Monday Tuesday WednesdayThursday Friday Saturday Sunday
0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 00

10

20

30

40

50
R
T
T
 (

m
s)

Median
Percentiles 1th-99th

(a)

Monday Tuesday WednesdayThursday Friday Saturday Sunday
0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 00.000

0.001

0.002

Pr
o
b
ab
ili
ty

(b)
Figure 4: RTT over week (a). Service requests generation
probability over a week (b)

physical network. To model the background traffic demand
from each base station to facilities we combine the CDRs
with another dataset, provided by the Italian operator Tele-
com Italia Mobile (TIM), as part of their Big Data Challenge
initiative [51]. We assume that (i) all the traffic generated
from a base station is managed by the closest facility, (ii) the
experienced delay is a function of the amount of the traffic
at both base station and facility. Applying STL time-series
decomposition [52] and the results of time-shared systems
analysis in [53], we create an instance of RTT distribution
over a week as the one shown in Figure 4a. For more details
about background traffic reconstruction, see A.
8.2. Service

To model the user base we reconstruct the interactions
graph of subscribers considering call and text messages
activities from CDRs dataset. For each subscriber in the
graph we identify his/her home base station by applying
the home/work detection algorithm in [54] on the mobility
trace reconstructed from the subscriber’s phone activities.
We filter out all subscribers whose home base station is
not detected, and based on the filtered graph we extract all
maximal cliques of 4 subscribers, which constitute the set of
groups of users .

As for the temporal dynamics of the service requests,
we consider the popular Multiplayer Online Battle Arena
(MOBA) League of Legends (LoL). Through the public
APIs service provided by the Riot Games developers [55],
we extracted the starting time of all the matches played in
2019, and we aggregate them over 10-minute time intervals.
Likewise our approach for the background traffic, we apply
STL time-series decomposition to extract the weekly service
request pattern and we normalize the resulting time-series
to get the probability of generating a service request in a
specific time interval. We assume that all service requests
are drawn from the same distribution. In Figure 4b we report
the probability of generating a service request over a week
time period.

Finally, we model the cost related to the assignment of
a facility instance, i.e. 𝑐𝑡𝑖𝑗 in Eq. (1), by considering that the
QoS level affects the users’ Quality of Experience (QoE). We
assume 5 levels of QoS, from 1 to 5, while level 0 encodes the
“no-service” case as a result of observing excessive network
delays. Therefore, we specify function ℎ() of (1), mapping
transission costs to service QoS level, as follows:

ℎ(𝑙𝑡𝑏𝑗) =
𝑚𝑖𝑛

(

5,
⌊

𝑙𝑡𝑏𝑗
Δ

⌋)

5
(17)

The term Δ is a simple normalization factor that is tuned
according to the range of variation of the network delay. In
our settings we use Δ = 10𝑚𝑠 which allows us to cover the
entire range of network delays (see Figure 4a). With this
formulation the lower the RTT the lower the assignment
costs, for example, an RTT below 10 ms leads to 𝑐𝑡𝑖𝑗 = 0,
while an RTT above 50 ms is mapped to 1, i.e., the highest
assignment cost. For sake of completeness, in this work we
use a straightforward function to map network delay to QoS,
but (17) can be easily modified to suit more sophisticated
mappings.
8.3. Agent

In order to use a DQN learning algorithm, the set of
possible actions must be finite. We discretize the set of
values of the action parameters, i.e. 𝑡𝑎𝑢𝑎, 𝜏𝑚, and 𝜏𝑜, by
considering five possible values (see Table 1). Among all
possible combinations, we remove those with both 𝜏𝑎, and
𝜏𝑚 equal to 0, thus leading to 120 possible actions.

As for the neural network architecture, we use a mul-
tilayer perceptron (MLP) having input layer composed of
17 units (the dimension of the state representation), output
layer of 120 units (all possible actions). We experimented
different MLP structures by varying the number of hidden
layers (2,3,4) and the number of units within each hidden
layer (16, 32 and 64), but we observed similar results for all
configurations. Based on these results we use 2 hidden layers
of 64 units each.

In Table 1 we summarize the main parameters of our
simulation environment. We remark that our computational
analysis is focused on evaluating the feasibility and the
effectiveness of the proposed DRL orchestration approach;
therefore the simulation framework we used in our experi-
ments provides a high-level abstraction of the whole system,
without simulating in full engineering detail real world
protocols and network interactions.

9. Results
In this section we present the detailed results of our

experiments.
9.1. Learning phase

We implemented our system using the OpenAi Gym
framework [56] and we use Tianshou library [57] for train-
ing the agent. As a training algorithm, we use a variant

Quadri et al.: Preprint submitted to Elsevier Page 10 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

Table 1
Simulation environment parameters

Physical network and service parameters
Number of BSs 224
Number of facilities (|𝐹 |) 7
Number of groups (||) ∼2200
Service duration time (𝛿𝑖) 6
Service requests per week (day) ∼6000 (∼860)
Queue capacity (𝑚𝑎𝑥|𝑄|) 100
Service deployment cost (𝑟𝑖) 1
Service instance migration cost (𝑚𝑖) 1
Over-provisioning cost (𝑜𝑗) 1
Base facility capacity (𝑅𝑗) 8
Maximum facility capacity (𝑅𝑗) 12

Agent actions
Admission threshold (𝜏𝑎) 0%, 25%, 50%, 75%, 100%
Migration threshold (𝜏𝑚) 0%, 25%, 50%, 75%, 100%
Over-provisioning (𝜏𝑜) 0%, 25%, 50%, 75%, 100%

of the DQN algorithm called Double-DQN[58] with Pri-
oritized Experience Replay (PER) memory [59]. DDQN
helps to mitigate the over-estimation problem that affects
DQN, while PER allows for better sampling of the replay
memory. In particular, with PER memory each element is
sampled with a probability that depends on the temporal
difference (TD) error, rather than drawn from a uniform
distribution. The key idea behind PER is to give more
importance to those samples where the difference between
the expected reward and the received one is large. In other
words, the goal is to train the agent with more examples
of bad past decisions. Moreover, PER introduces a bias
correction weight, namely importance-sampling, which is
tuned using the hyper-parameter 𝛽 ∈ [0, 1]. 𝛽 is linearly
annealed from its initial value to 1 during the learning phase,
allowing an almost uniform sampling at the beginning of
training, where the policy is highly unstable, in contrast to a
more biased selection of examples in the final training stages.
More details about PER are available in [59]. To balance
exploration and exploitation during the learning phase, we
adopt a simple 𝜖-greedy policy, imposing 𝜖 = 0.1. In Table 2
we report the main hyper-parameters used in the learning
phase and in the following we discuss which combination
led to best results in terms of mean expected reward.

In Figure 5 we show the results of the learning phase
using different combinations of hyper-parameters. From Fig-
ure 5a we can observe the effect of two hyper-parameters: the
discount factor 𝛾 and the learning rate. The results clearly
show the impact of the discount factor. In particular, if 𝛾 =
0.99 the learning algorithm convergence is poor, probably
because the current Q-function estimation discount is too
optimistic. As for the learning rate, the tested values do
not affect the performance significantly. We therefore fix
the learning rate to 0.0005 in the subsequent experiments.
The impact of the mini-batch size is shown in Figure 5b.
The learning phase benefits from larger mini-batches which
allow to obtain a finer update and consequently faster con-
vergence. For these reasons, we choose random mini-batches
of 64 samples.

Table 2
Parameters for the learning state, in bold the configurations
leading to better results.

DDQN parameters
Episode duration (steps) 1008 (1 week)
Learning phase duration (episodes) 1040 (20 years) - 1560 (30 years)
Target network update interval 2000
Learning rate {0.0001, 0.0005, 0.001}
Discount factor (𝛾 in) {0.99, 0.9}
Training interval steps 4
Mini-batch size {32, 64}
Exploration rate (𝜖) 0.1

Replay memory
Memory size 100,000 (FIFO)
Prioritization exponent (𝛼 in [59]) 0.6
Important sampling weight exponent (𝛽 in [59]) 0.2

Reward function parameters
QoS weight (𝛼𝑞)

{0.25, 0.5, 1}Over-provisioning weight (𝛼𝑜)
Waiting time weight (𝛼𝑡)

MLP architecture
Hidden layer units 64
Number of layers 2

Activation function Hidden layers: Relu
Output layer: Linear

The multi-objective formulation of the reward function
(see Eq. (16)) provides the service provider with the op-
portunity to finely balance reward components. We perform
a grid-search considering three values for each weight 𝛼𝑞 ,
𝛼𝑜, and 𝛼𝑡, i.e. 0.25, 0.5 and 1. The Figure 5c shows the
evolution of the mean reward per episode over a learning
phase of more than 1000 episodes on a representative subset
of combinations. As we can observe, the choice of reward
components’ weights has a strong impact on the maximum
accumulated reward. In particular, the weight associated to
the waiting time component 𝛼𝑡 is a critical factor, whose
reduction leads the agent to converge to low reward values.
As for the other two components, the results show a marginal
sensitiveness to the QoS weight 𝛼𝑞 and poor performance
when the value of the over-provisioning weight 𝛼𝑜 is greater
than or equal to 𝛼𝑡. We further investigate the impact of the
weights of the reward function. In Figure 6 we report the
evolution of each single reward component considering the
four combinations of weights shown in Figure 5c. These
figures confirm what we observed in the combined reward
function, that is the strong impact of the value of 𝛼𝑡 (see
Figure 6a), in particular, the higher relative importance of
QoS components leads to converging to lower values of the
reward component. These results are a direct consequence
of the action implementation described in Section 6.3. The
actual QoS level of the deployed instances is the result of the
solution of the eGAP problem (11)-(15), on which the agent
has control only indirectly, through the choice of migration
threshold (𝜏𝑚) value. Moreover, the achievable QoS level
mainly depends on the conditions of the underlying physical
network, which are not under the agent’s control. On the
contrary, the agent has direct control of both the queue
and the negotiated resources; thus the choice of the values
of 𝜏𝑎 and 𝜏𝑜 directly impacts the reward function. As we
can observe in Figure 6b and Figure 6c, the greater the
relative importance of the component, the higher the reward
component value. This is particularly evident for the waiting

Quadri et al.: Preprint submitted to Elsevier Page 11 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

0 200 400 600 800 1000
Episode

600

500

400

300

200

100

M
ea

n
re

wa
rd

 p
er

 e
pi

so
de

batch size=32

=0.9, lr=0.001
=0.9, lr=0.0005
=0.9, lr=0.0001

=0.99, lr=0.001
=0.99, lr=0.0005
=0.99, lr=0.0001

(a)

0 200 400 600 800 1000
Episode

450

400

350

300

250

200

150

100

M
ea

n
re

wa
rd

 p
er

 e
pi

so
de

=0.9, lr=0.0005

Mini batch size=32
Mini batch size=64

(b)

0 200 400 600 800 1000 1200 1400 1600
Episode

400

350

300

250

200

150

100
M

ea
n

re
wa

rd
 p

er
 e

pi
so

de

q=0.25, o=0.5, t=1
q=1, o=1, t=1

q=0.5, o=0.5, t=1
q=0.5, o=1, t=1

(c)
Figure 5: Evolution of mean reward per episode during the learning phase varying hyper-parameters settings.

0 200 400 600 800 1000 1200 1400 1600
Episode

350

300

250

200

150

100

50

M
ea

n
of

 Q
oS

 c
om

po
ne

nt
s

(p
er

 e
pi

so
de

)

q=0.25, o=0.5, t=1
q=1, o=1, t=1

q=0.5, o=0.5, t=1
q=0.5, o=1, t=1

(a) QoS

0 200 400 600 800 1000 1200 1400 1600
Episode

250

200

150

100

50

0

M
ea

n
of

 O
ve

r-p
ro

vi
sio

ni
ng

co
m

po
ne

nt
s (

pe
r e

pi
so

de
)

q=0.25, o=0.5, t=1
q=1, o=1, t=1

q=0.5, o=0.5, t=1
q=0.5, o=1, t=1

(b) Over-provisioning

0 200 400 600 800 1000 1200 1400 1600
Episode

250

200

150

100

50

0

M
ea

n
of

 W
ai

tin
g

tim
e

co
m

po
ne

nt
s

q=0.25, o=0.5, t=1
q=1, o=1, t=1

q=0.5, o=0.5, t=1
q=0.5, o=1, t=1

(c) Waiting time
Figure 6: Evolution of mean reward per episode during the learning phase of the different components of the reward function
considering different weights combinations.

time component, with a difference of almost 100 units of
reward collected during a training epoch.

Overall, the results of the training phase show a fast
convergence of the reward function followed by a long fine-
tuning phase of the DRL policy. Moreover, we underline the
sensitivity of the policy to the hyper-parameter values, which
requires careful tuning according to the operation goals of
the service orchestrator.

9.2. Policy evaluation
In this section the learning policy is evaluated by com-

paring the decisions of the DRL agent with those obtained
by means of the full offline problem model (see Section 5).
From the model (2)-(9) we obtain a lower bound guarantee
on the best value that the DRL agent can achieve. In fact,
while the DRL agent works online, (2)-(9) works offline,

Quadri et al.: Preprint submitted to Elsevier Page 12 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

requires all data in advance and generates a globally optimal
solution.

Due to the long computational time required to solve
the problem (2)-(9) over a single epoch (1 week), the opti-
mization proceeds by disaggregating it into one independent
subproblem working over a single day (144 time slots). In the
remainder we refer to such a solution as the optimal offline
policy.

As a benchmark of our approach, we compare it with
three different heuristics. The first is a simple greedy best-
fit scheduling heuristics [60] that takes the service requests
one at a time, in the arrival order, and selects for each of
them the facility to assign and the start time minimizing the
objective (2). The orchestrator is then committed to start
processing the request accordingly, without interruptions
and without migrations. The partial solutions produced for
the single requests iteratively stack up in a full solution. The
time horizon of best-fit has been limited to 6 time slots2: its
solution can be produced very quickly by simple inspection
loops.

The other two heuristics are “online” counterparts of
the model (2)–(9). They consider only the service requests
in a single batch, and only the time slots in the horizon
of 6 time slots, thereby producing an instance whose size
is very small. Their global optimal solution is obtained by
means of GUROBI. From a combinatorial viewpoint, this
is the best solution that can be produced without learning
mechanisms. As for best-fit, the orchestrator is committed
to performing this partial solution, and partial solutions for
the single batches iteratively stack up into full solutions.
Each GUROBI run requires about 0.05 s (+/- 0.3 s). Two
versions of this MIP online algorithm have been included in
our comparison: one setting all objective function costs to
those of the time slot in which the algorithm is invoked, and
one setting the costs to a forecast value coming from data.
We refer to the latter as the ‘cost prediction’ version.

We run experiments on 100 different sets of randomly
generated service requests (see 4b) and we evaluate the
performance by means of the following metrics:

1. Optimality gap - it measures the goodness of the
agent decision, comparing the value of the objective
function (2) on its solution w.r.t the one of the optimal
offline policy. The four objectives are aggregated by
sum, using equal weights. The optimality gap metric
is defined as |𝑜𝑏𝑗𝑎 − 𝑜𝑏𝑗∗|∕|𝑜𝑏𝑗∗| where 𝑜𝑏𝑗𝑎 and
𝑜𝑏𝑗∗ are the values of the objective function evaluated
considering the DRL agent and optimal offline policy,
respectively;

2. Average QoS level - it accounts for the average level of
QoS offered to users over the entire running time of a
service instance;

3. Average waiting time - it measures the average time a
service request has to wait in the queue before being
chosen for deploying;

2We observed that in some challenging scenarios 6 time slots were not
enough. In these cases we allowed a time horizon of 12 time slots.

4. Over-provisioning overall cost - it accounts for the to-
tal amount of extra resources required over the whole
time period;

5. Number of migrations - it counts the number of migra-
tions performed over the entire time period.

In the following, we show the results obtained by comparing
the DRL policies against the three above mentioned compet-
ing policies as well as the optimal offline policy. For sake of
readability, we only report the results of the top-three DRL
policies based on the median optimality gap value.

In Figure 7 we report the boxplot of the distribution for
each metric over all 100 experiments. We can observe that
the DRL policies achieve an optimality gap always below
5% with a median value around 2.5%. Conversely, the other
non-DRL policies achieve only an optimality gap of around
12-14%, on median. Considering the four components of the
objective function (2) separately, we observe significant dif-
ferences among policies. By looking at the QoS component
we note that this component is the least sensitive to different
policies. We note that all DRL policies are able to guarantee
near optimal QoS level, while the cost prediction version
of the MIP online policy achieves the best result benefiting
from the information about future assignment costs. On the
contrary, waiting time and over-provisioning components
are highly sensitive to different policies. We can observe
that DRL policies are the most balanced by performing a
good trade-off between the two components. In particular,
they are able to guarantee a waiting time close to the opti-
mal one without asking for too many extra resources. Both
MIP online policies show extremely conservative behavior,
asking for a limited amount of extra resources by strongly
penalizing the waiting time. The best-fit heuristic performs
similarly to DRL policies by looking at over-provisioning
component, but is unable to offer short waiting time. As for
the migration component, DRL agents perform a number of
migrations in line with the optimal offline policy, as opposite
to MIP online policies which perform up to three times the
optimal number of migrations. The best-fit policy does not
perform any migration by design.

In Figure 8 we consider two other metrics which are not
directly part of the objective function (2), namely the mean
of the load of the facilities and the largest load difference
over time. In the figure, we report all six online policies and
the optimal offline one. For each policy, the top figure shows
the facilities load over time, while the bottom one reports
the largest load difference metric. For sake of readability,
we only show the mean value and the standard deviation
of the mean across 100 runs. As observed in Figure 7,
both MIP online policies tend to use slightly fewer extra
resources, in particular during the peak load (between 18
and 24). In general, the best-fit policy shows the highest
over-provisioning cost (see Figure 7), however, it fails to use
all the resources available at the facility during peak hours.
This is more evident by observing the difference in facility
load, where it emerges that best-fit deployments are more
unbalanced w.r.t. other policies during mid-load hours and
saturate in the peak hours. DRL policies exhibit a behavior

Quadri et al.: Preprint submitted to Elsevier Page 13 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

5

10

15

20
Op

tim
al

 g
ap

(%
)

Optimality gap

3.1

3.2

3.3

3.4

3.5

Av
er

ag
e

Qo
S

(M
OS

)

QoS
Optimal Offline
MIP Online
MIP Online Cost Prediction
Best Fit
αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00
αq:0.25, αo:0.50, αt:1.00

0.0

0.2

0.4

0.6

0.8

W
ai

tin
g

tim
e

(ti
m

e-
slo

ts
)

Queue waiting time

200

300

400

500

600

Re
so

ur
ce

s
(u

ni
t)

Over-provisioned resources

0

20

40

60

M

ig
ra

tio
ns

Migration

Figure 7: Evaluation on base scenario: boxplot of the distribution of the evaluation metrics considering the top-three DRL policies,
the optimal offline policy and the heuristics.

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0 3 6 9 12 15 18 21 24
Hour of day

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0 3 6 9 12 15 18 21 24
Hour of day

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

Optimal Offline
MIP Online MIP Online Cost Prediction
Best Fit αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00 αq:0.25, αo:0.50, αt:1.00

Figure 8: For each policy, the mean of the load of the facilities (top) and the largest load difference (bottom) over time in the
base scenario. The horizontal dashed line indicates the limit of the available capacity without incurring extra costs (𝑅𝑗).

close to Optimal policy, with the exception of slightly more
usage of extra resources during peak hours, in line with the
results shown in Figure 7 highlighting the overall higher
over-provisioning cost.

The results observed in this set of experiments highlight
the ability of the DRL agents to orchestrate the service by
balancing the different components of the objective function.
Moreover, we can observe that the reward function config-
urations for the selected DRL policies are all unbalanced

towards the waiting time component, in line with what we
have observed in the learning phase.
9.3. Evaluation on higher system load

In a second set of experiments, we test the performances
of the DRL policies when used on systems having a load that
is different from that used for learning. In particular, in our
tests, the overall number of service requests is 10% higher
than the one used during learning and previous evaluation

Quadri et al.: Preprint submitted to Elsevier Page 14 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

5

10

15

20

25
Op

tim
al

 g
ap

(%
)

Optimality gap

3.1

3.2

3.3

3.4

3.5

Av
er

ag
e

Qo
S

(M
OS

)

QoS
Optimal Offline
MIP Online
MIP Online Cost Prediction
Best Fit
αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00
αq:0.25, αo:0.50, αt:1.00

0.00

0.25

0.50

0.75

1.00

1.25

W
ai

tin
g

tim
e

(ti
m

e-
slo

ts
)

Queue waiting time

400

500

600

700

800

Re
so

ur
ce

s
(u

ni
t)

Over-provisioned resources

0

20

40

60

M

ig
ra

tio
ns

Migration

Figure 9: Evaluation on higher system load: Boxplot of the distribution of the evaluation metrics considering the top-three DRL
policies, the optimal offline policy and the heuristics.

0

10

20

30

40

50

60

70

Nu
m

be
r o

f i
ns

ta
nc

es

No over-provising limit

Running instances
Queueing instances

0
25
50
75

100

Ac
tio

n
va

lu
e

Admission threshold a

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Simulation time (hour of day)

0
25
50
75

100

Ac
tio

n
va

lu
e

Over-provisioning o

Figure 10: Example of DRL agent decisions in a more loaded
scenario.

phase. For consistency, we consider the same set of DRL
policies used above (Section 9.2). Figure 9 shows the boxplot
of the distribution for each metric over all 100 experiments.
As expected, the performance worsen, due to the more chal-
lenging environment. Also in this scenario, DRL policies
outperform the competing non-DRL policies and exhibit a
higher capability to properly balance all the components.
Both MIP online policies show the same behavior as the one
observed previously in Figure 7, i.e., a conservative usage of
capacity at the expense of a long waiting time. The best-fit
heuristic has a similar behavior to DRL and optimal policies
in terms of extra resource usage, but yields the lowest QoS
level and has poor waiting time.

By focusing on the differences of the performance of the
DRL agent w.r.t. previous scenario, we observe that the agent
performs worse than the optimal policy by looking at the
queue waiting time component. This is caused by the myopic
view of DRL agent which eagerly admits service requests
to reduce waiting time which leads to rapid saturation of
the facilities thus preventing the agent from deploying all
requests in the queue, in particular during peak hours. In
Figure 10 we report an example to clarify this observation.
As we can see, starting from 7 P.M., the system is getting
more and more loaded due to the DRL agent decision to

00 04 08 12 16 20 24
Hour of day

0.0000

0.0005

0.0010

0.0015

0.0020

Pr
ob

ab
ilit

y

Gaussian = 1.5
Baseline (LoL dataset)

Figure 11: Probability of generating a service request during
the day. Baseline (from LoL dataset) and gaussian distribution.

admit almost all requests. At a certain point (around 8 P.M.)
this action becomes infeasible even by using all the extra
capacity, thus inducing the agent to reduce the admission
threshold. As a consequence, a non-negligible amount of
requests have to wait for long in the queue. As for the load
of the facilities over time, we observed similar results as in
the previous scenario (see Figure 8).

Overall, the results obtained with this set of experiments
highlight the goodness of the DRL policies which are able
to compete with the optimal offline policy in terms of both
achieved QoS and required resources. They outperform other
online policies at the cost of a marginal increase in queuing
time.
9.4. Evaluation on different temporal dynamics

In a last set of experiments, we consider a further chal-
lenging environment, in which the DRL agent’s is asked
to take decisions on a system having a different temporal
pattern of service requests (see Figure 11). This task is more
difficult, due to a longer period of high service demand
causing faster saturation of the facilities.

In Figure 12, we show an example of the DRL agent deci-
sions in this case. As we can observe, the number of requests
in the queue during the peak hours is almost double the
one in Figure 10, although the agent asks for the maximum
available capacity. In Figure 13 we summarize the results of
these experiments which highlight the strong contribution of

Quadri et al.: Preprint submitted to Elsevier Page 15 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

0

10

20

30

40

50

60

70
Nu

m
be

r o
f i

ns
ta

nc
es No over-provising limit

Running instances
Queueing instances

0
25
50
75

100

Ac
tio

n
va

lu
e

Admission threshold a

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Simulation time (hour of day)

0
25
50
75

100

Ac
tio

n
va

lu
e

Over-provisioning o

Figure 12: Example of DRL agent decisions in the gaussian
requests generation scenario.

the waiting time component and the differences among the
various reward function settings. In particular, the third DRL
policy, i.e. (𝛼𝑞 = 0.25, 𝛼𝑜 = 0.5, 𝛼𝑡 = 1), which tends to be
more conservative in asking for extra resources, performs
significantly worse than the others. On the contrary, the
other two DRL policies achieve again resource usage levels
that can compete with the optimal offline ones and perform
better than non-DRL competitors. Besides, DRL policies
also preserve an overall good performance regarding the
waiting time, which keeps around one time slot on average.
Non-DRL policies exhibit the same behavior observed in
the other two scenarios, with the only exception of the best-
fit heuristic which becomes more conservative in asking for
extra resources.

As for the resource usage at the facility level, in Fig-
ure 14 we report the load of each facility and the largest
load difference over time. Compared to the base scenario
(see Figure 8) we observe that all the online policies use
more extra resources for a longer time than the optimal
one during the peak hours. The only exception is the last
DRL policy, i.e., (𝛼𝑞 = 0.25, 𝛼𝑜 = 0.5, 𝛼𝑡 = 1), which,
however, exhibits poor performance admitting less requests
than the other DRL policies, causing longer waiting time
(see Figure 13). As highlighted in the analysis of the base
scenario (see Figure 8), the best-fit policy is unable to
exploit all the available capacity and suffers from poor
load balancing among facilities. Another interesting general
observation about the behavior of online policies is that they
produce more unbalanced allocation strategies than optimal
offline in peak hours. However, this drawback is partially
compensated by the fact that facilities are not completely
full, on average, as with the optimal policy, leaving some
free resources to cope with some extra service requests.
9.5. Computational efficiency

The last aspect we analyze is the computational ef-
ficiency of the online decision process. To perform this
analysis, we measure the time the agent requires to perform
a decision over a single time slot. In order to keep track of
the policies requiring to solve an optimization problem, we
also include the preprocessing time to generate a problem
instance. All the measurements were conducted on a Ubuntu
20.04 server equipped with two Intel Xeon Silver 4216

(2.10 GHz) capable of managing 32 parallel threads each.
In the experiment, we execute 60 scenario runs in parallel,
simulating the case of multiple orchestration tasks on a
single physical machine.

In Table 3, we report the descriptive statistics (i.e., mean,
standard deviation of the mean, and median) of the time
taken by each online policy in three scenarios presented
above to perform the decision process. As expected the best-
fit policy is the quickest taking 2-3 ms, on average, indepen-
dent of the type of scenario. On the contrary, MIP online
policies are the least computationally efficient (∼150-270 ms
on average), and processing time is strongly affected by the
difficulty of the problem instance. DRL policies show a good
performance with processing time between 14 and 17 ms,
which is a remarkable result if we consider their complexity
as compared to the best-fit heuristic. Finally, in Figure 15 we
report the complementary cumulative distribution function
(CCDF) of the decision time considering all three scenarios.
This analysis gives an indication of the suitable duration of
a time slot to be able to use a specific online policy3. From
the figures, we can see that best-fit can be easily employed
for near-real-time or even real-time decision processes below
20-30 ms. On the contrary, MIP online policies can not
be used in near-real-time settings, because a non-negligible
fraction of decisions takes more than 500 ms or even 1 s in
case of more challenging scenarios (see Figure 15c). DRL
policies are able to perform decisions within 100 ms in
most cases making them suitable for near-real-time decision
processes.

10. Discussion
The proposed online approach based on DRL has shown

good performance in all the evaluation scenarios. In general,
our DRL framework is able to match the QoS of an optimal
offline policy while keeping low the waiting times, at the
only cost of using a marginal amount of extra resources.
Such a result is far from obvious, as our DRL agent has
no information about potential future requests, which could
lead to sub-optimal decisions especially when facilities are
overloaded. Therefore, we expect that further improvements
can be achieved by estimating future service demand, thus
assisting the agent to take better decisions. To this aim,
we could improve our framework by embedding AI-based
prediction models, such as [61], into the DRL agent.

A further key issue to consider is the tuning of the reward
function which depends on both the model hyper-parameters
and the weights balancing the different objectives. While the
first set can be chosen through simulations, the best set of ob-
jective weights to select in a real deployment mainly depends
on the specific characteristics of the service, and on the
relative importance among the different components of the
objective function. Ultimately, such a relative importance
needs to be chosen by the decision maker. However, we have
shown that some combinations of weights can be dominated

3Here we assume that the order of magnitude of service requests per
time slot is the same as the one used in our experiments.

Quadri et al.: Preprint submitted to Elsevier Page 16 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

0

50

100

150

Op
tim

al
 g

ap
(%

)
Optimality gap

3.1

3.2

3.3

3.4

3.5

Av
er

ag
e

Qo
S

(M
OS

)

QoS
Optimal Offline
MIP Online
MIP Online Cost Prediction
Best Fit
αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00
αq:0.25, αo:0.50, αt:1.00

0

2

4

6

W
ai

tin
g

tim
e

(ti
m

e-
slo

ts
)

Queue waiting time

600

700

800

900

1000

Re
so

ur
ce

s
(u

ni
t)

Over-provisioned resources

0

20

40

60

80

M

ig
ra

tio
ns

Migration

Figure 13: Evaluation on different temporal dynamics: Boxplot of the distribution of the evaluation metrics considering the top-two
DRL policies, the optimal offline policy and the heuristics.

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0 3 6 9 12 15 18 21 24
Hour of day

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0 3 6 9 12 15 18 21 24
Hour of day

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

0
4
8

12

Us
ed

0

5

10

Di
ff

Optimal Offline
MIP Online MIP Online Cost Prediction
Best Fit αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00 αq:0.25, αo:0.50, αt:1.00

Figure 14: For each policy, the mean of the load of the facilities (top) and the largest load difference (bottom) over time in the
higher system load scenario. The horizontal dashed line indicates the limit of the available capacity without incurring extra costs
(𝑅𝑗).

by others by means of experiments, thus guiding the decision
maker towards smart weight choices. In particular, a fair
balance among the different components looks suitable for a
generic multi-user service tolerating a non-negligible setup
time. Moreover, the results obtained by using the DRL
policies are consistent across all the tested environments,
thus showing the ability of the agent to adapt to similar, albeit
new contexts.

We remark that we do not provide a monolithic solution
for the online orchestration of edge services. Rather, we
propose a flexible and modular integration of DRL and
MILP components. Each component can be modified to
address the specific requirements of a service, thus allowing
a finer tuning. Moreover, specific deployment goals or effi-
ciency requirements may affect the choice of a specific DRL
algorithm and even the actual action implementation. As an

Quadri et al.: Preprint submitted to Elsevier Page 17 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

10−4 10−3 10−2 10−1 100 101

Time-slot decision time (s)

10−4

10−3

10−2

10−1

100
CC

DF

MIP Online
MIP Online Cost Prediction
Best Fit
αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00
αq:0.25, αo:0.50, αt:1.00

(a) Base scenario

10−4 10−3 10−2 10−1 100 101

Time-slot decision time (s)

10−4

10−3

10−2

10−1

100

CC
DF

MIP Online
MIP Online Cost Prediction
Best Fit
αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00
αq:0.25, αo:0.50, αt:1.00

(b) Higher system load

10−4 10−3 10−2 10−1 100 101

Time-slot decision time (s)

10−4

10−3

10−2

10−1

100

CC
DF

MIP Online
MIP Online Cost Prediction
Best Fit
αq:0.25, αo:0.25, αt:1.00
αq:0.50, αo:0.25, αt:1.00
αq:0.25, αo:0.50, αt:1.00

(c) Gaussian request generation
Figure 15: Complementary cumulative distribution function (CCDF) of the decision process time (in seconds) for all online policies
in all considered scenarios (log scale).

Table 3
Descriptive statistics of the decision process time (in milliseconds) for all online policies.

Base Higher load Gaussian pattern
Policy Mean Std. Med. Mean Std. Med. Mean Std. Med.

Best Fit 2.69 2.44 2.03 3.07 2.73 2.31 2.91 3.05 1.88
𝛼𝑞:0.25, 𝛼𝑜:0.25, 𝛼𝑡:1.00 14.73 17.98 9.19 16.36 20.75 10.38 15.16 21.1 6.94
𝛼𝑞:0.50, 𝛼𝑜:0.25, 𝛼𝑡:1.00 14.01 19.06 8.59 15.63 22.09 9.47 17.14 24.87 7.04
𝛼𝑞:0.25, 𝛼𝑜:0.50, 𝛼𝑡:1.00 14.15 18.09 8.47 15.72 17.79 9.88 15.36 29.29 7.42

MIP Online Cost Prediction 152.34 186.69 91.0 120.92 126.64 80.01 371.05 584.95 130.67
MIP Online 167.98 184.56 119.04 185.76 199.36 128.32 321.87 473.21 164.95

example, the sorting steps of Algorithm 1 can be customized
to consider different operating goals.

As for the choice of DRL algorithm, we selected DDQN
which is designed for finite action space, like the other
learning algorithms of the DQN family. In order to deal
with potential explosion of action space dimension, we
chose sensible values (see Table 1) which are a trade-off
between a manageable space dimension and meaningful
agent decisions. Our experiments have shown that the DRL
agent decisions produce results close to those obtained by
an optimal offline policy, which operates in a much larger
action space. Whenever we need to deploy new services with
specific or finer threshold requirements, we have two options
to follow. The first is to train the DRL agent by considering
a larger and service-tailored action space. However, this
straightforward option may lead to intractable action spaces

and over-fitting problems. The alternative option is to change
DRL algorithm by exploiting the modular architecture of
our orchestration framework. For example, DRL algorithms
belonging to Deep Deterministic Policy Gradient (DDPG)
family, such as Twin Delayed Deep Deterministic Policy
Gradients (TD3) [62] and Proximal Policy Optimization
(PPO) [63], are suitable candidates for handling continuous
action space, although they require longer learning phases.

Finally, we observe that in this paper we focus on a
family of services, rather than a specific one. This leads to
considering a high-level model of the physical and service
layers with the aim of describing a wide range of network
delays (see Section 8). This approach enables to achieve an
overall understanding of the performance of a DRL-based
orchestration framework in a very general setting, and it can

Quadri et al.: Preprint submitted to Elsevier Page 18 of 21

Multi-user edge service orchestration based on Deep Reinforcement Learning

be easily deployed for managing services with similar char-
acteristics. Of course, in case we need to orchestrate services
with very specific requirements and dynamics, that cannot
be captured by a general network and service model, further
modeling of the environment and agent’s observation space
is required. This could lead, for example, to consider specific
communication protocols [64] and standard orchestration
framework architectures. Moreover, the DRL agent can be
easily integrated with more sophisticated simulation tools,
such as OMNeT++4 and ns-35, in a holistic co-simulation
framework.

11. Conclusions
In this paper, we presented an online orchestration al-

gorithm based on DRL to manage the life-cycle of session-
based services, such as multi-player online games and video
conferences. This class of services is characterized by state-
ful, long-lived, and shared instances which require flexible
modeling and algorithmic solutions. We presented a math-
ematical formulation of the problem based on generalized
assignment and scheduling problem with elastic capacities
(eGAP) with a multi-objective function accounting for the
dynamic of network conditions. We designed an orches-
tration framework based on a combination of DRL and a
parametric combinatorial model, which is suitable for online
service orchestration.

Our computational results show that our online algo-
rithm based on DRL leads to solutions whose gap with
respect to a theoretical offline optimal policy remains very
limited. Moreover, the learned policy is able to guarantee
a suitable QoS level even in high load scenarios and unex-
pected load patterns, at the cost of using a limited amount
of additional resources. Moreover, our policy is able to
maintain a fair load balancing among facilities, close to the
optimal one. Finally, the obtained figures of computational
time show that our solution is suitable for addressing near-
real-time decision processes. As an overall intuition, we ar-
gue that the main factor yielding our method to achieve better
performance than existing ones is its combination of agent
decision and action implementation. As a matter of fact, our
agent is allowed to implicitly explore a combinatorial set of
options related to each action, thereby implicitly taking into
account a very large set of optimization possibilities.

As future directions of this research, in addition to adopt-
ing DRL algorithms belonging to DDPG family to deal
with continuous action space, we are considering alternative
models of the observable state eliminating the dependency
on a fixed set of facilities. The goal is to obtain an even
more general model of the edge computing system allowing
for dynamic edge network topology, as in the case of multi-
provider/multi-tenant scenarios.

4https://omnetpp.org/
5https://www.nsnam.org/

Acknowledgments
This work was partially supported by project SERICS

(PE00000014) under the MUR NRRP funded by the EU-
NextGenerationEU

References
[1] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J.

Ramos-Munoz, J. M. Lopez-Soler, A survey on 5g usage scenarios
and traffic models, IEEE Communications Surveys & Tutorials 22 (2)
(2020) 905–929. doi:10.1109/COMST.2020.2971781.

[2] M. Agiwal, A. Roy, N. Saxena, Next generation 5g wireless networks:
A comprehensive survey, IEEE Communications Surveys & Tutorials
18 (3) (2016) 1617–1655. doi:10.1109/COMST.2016.2532458.

[3] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
T. Turletti, A survey of software-defined networking: Past, present,
and future of programmable networks, IEEE Communications Sur-
veys & Tutorials 16 (3) (2014) 1617–1634. doi:10.1109/SURV.2014.

012214.00180.
[4] S. Kianpisheh, T. Taleb, A survey on in-network computing: Pro-

grammable data plane and technology specific applications, IEEE
Communications Surveys & Tutorials (2022) 1–1doi:10.1109/COMST.
2022.3213237.

[5] B. Yi, X. Wang, K. Li, S. k. Das, M. Huang, A comprehensive survey
of network function virtualization, Computer Networks 133 (2018)
212–262. doi:10.1016/j.comnet.2018.01.021.

[6] C.-H. Hong, B. Varghese, Resource management in fog/edge comput-
ing: A survey on architectures, infrastructure, and algorithms, ACM
Comput. Surv. 52 (5) (sep 2019). doi:10.1145/3326066.

[7] F. Spinelli, V. Mancuso, Toward enabled industrial verticals in 5g:
A survey on mec-based approaches to provisioning and flexibility,
IEEE Communications Surveys & Tutorials 23 (1) (2021) 596–630.
doi:10.1109/COMST.2020.3037674.

[8] N. Hassan, K.-L. A. Yau, C. Wu, Edge computing in 5g: A review,
IEEE Access 7 (2019) 127276–127289.

[9] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, Z. Smoreda, A tale of
ten cities: Characterizing signatures of mobile traffic in urban areas,
IEEE Transactions on Mobile Computing 16 (10) (2017) 2682–2696.
doi:10.1109/TMC.2016.2637901.

[10] S. Schneider, R. Khalili, A. Manzoor, H. Qarawlus, R. Schellenberg,
H. Karl, A. Hecker, Self-learning multi-objective service coordination
using deep reinforcement learning, IEEE Transactions on Network
and Service Management 18 (3) (2021) 3829–3842. doi:10.1109/

TNSM.2021.3076503.
[11] J. Gil Herrera, J. F. Botero, Resource allocation in nfv: A comprehen-

sive survey, IEEE Transactions on Network and Service Management
13 (3) (2016) 518–532. doi:10.1109/TNSM.2016.2598420.

[12] Q. Luo, S. Hu, C. Li, G. Li, W. Shi, Resource scheduling in edge
computing: A survey, IEEE Communications Surveys Tutorials 23 (4)
(2021) 2131–2165. doi:10.1109/COMST.2021.3106401.

[13] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture
and computation offloading, IEEE Communications Surveys Tutori-
als 19 (3) (2017) 1628–1656. doi:10.1109/COMST.2017.2682318.

[14] F. Dressler, C. F. Chiasserini, F. H. Fitzek, H. Karl, R. L. Cigno,
A. Capone, C. Casetti, F. Malandrino, V. Mancuso, F. Klingler,
G. Rizzo, V-edge: Virtual edge computing as an enabler for novel
microservices and cooperative computing, IEEE Network 36 (3)
(2022) 24–31. doi:10.1109/MNET.001.2100491.

[15] A. Tsipis, K. Oikonomou, Player assignment in mec gaming for social
interactivity and server provisioning optimization, in: 2021 IEEE
Symposium on Computers and Communications (ISCC), 2021, pp.
1–7. doi:10.1109/ISCC53001.2021.9631480.

[16] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin,
D. O. Wu, Improving cloud gaming experience through mobile edge
computing, IEEE Wireless Communications 26 (4) (2019) 178–183.
doi:10.1109/MWC.2019.1800440.

Quadri et al.: Preprint submitted to Elsevier Page 19 of 21

https://doi.org/10.1109/COMST.2020.2971781
https://doi.org/10.1109/COMST.2016.2532458
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/COMST.2022.3213237
https://doi.org/10.1109/COMST.2022.3213237
https://doi.org/10.1016/j.comnet.2018.01.021
https://doi.org/10.1145/3326066
https://doi.org/10.1109/COMST.2020.3037674
https://doi.org/10.1109/TMC.2016.2637901
https://doi.org/10.1109/TNSM.2021.3076503
https://doi.org/10.1109/TNSM.2021.3076503
https://doi.org/10.1109/TNSM.2016.2598420
https://doi.org/10.1109/COMST.2021.3106401
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/MNET.001.2100491
https://doi.org/10.1109/ISCC53001.2021.9631480
https://doi.org/10.1109/MWC.2019.1800440

Multi-user edge service orchestration based on Deep Reinforcement Learning

[17] A. R. Benamer, K. Boussetta, N. B. Hadj-Alouane, A genetic al-
gorithm for the placement of latency-sensitive multiplayer game
servers in the fog, in: 2021 IEEE Global Communications Conference
(GLOBECOM), 2021, pp. 1–6. doi:10.1109/GLOBECOM46510.2021.

9685952.
[18] Y. Gao, C. Zhang, Z. Xie, Z. Qi, J. Zhou, Cost-efficient and quality-

of-experience-aware player request scheduling and rendering server
allocation for edge-computing-assisted multiplayer cloud gaming,
IEEE Internet of Things Journal 9 (14) (2022) 12029–12040. doi:

10.1109/JIOT.2021.3132849.
[19] L. Wang, L. Jiao, T. He, J. Li, H. Bal, Service placement for collabora-

tive edge applications, IEEE/ACM Transactions on Networking 29 (1)
(2021) 34–47. doi:10.1109/TNET.2020.3025985.

[20] A. Tsipis, K. Oikonomou, Joint optimization of social interactivity
and server provisioning for interactive games in edge computing,
Computer Networks 212 (2022) 109028. doi:10.1016/j.comnet.2022.
109028.

[21] P. B. Mirchandani, R. L. Francis, Discrete Location Theory, Wiley,
1990.

[22] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, L. Tassiulas, Joint
service placement and request routing in multi-cell mobile edge com-
puting networks, in: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 10–18. doi:10.1109/INFOCOM.

2019.8737385.
[23] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,

K. S. Chan, Service placement and request scheduling for data-
intensive applications in edge clouds, in: IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, 2019, pp. 1279–
1287. doi:10.1109/INFOCOM.2019.8737368.

[24] S. Pasteris, S. Wang, M. Herbster, T. He, Service placement with prov-
able guarantees in heterogeneous edge computing systems, in: IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications,
2019, pp. 514–522. doi:10.1109/INFOCOM.2019.8737449.

[25] P. Lai, Q. He, G. Cui, F. Chen, M. Abdelrazek, J. Grundy, J. Hosking,
Y. Yang, Quality of experience-aware user allocation in edge com-
puting systems: A potential game, in: 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), 2020, pp.
223–233. doi:10.1109/ICDCS47774.2020.00036.

[26] F. Chiti, R. Fantacci, F. Paganelli, B. Picano, Virtual functions place-
ment with time constraints in fog computing: A matching theory
perspective, IEEE Transactions on Network and Service Management
16 (3) (2019) 980–989. doi:10.1109/TNSM.2019.2918637.

[27] F. Santos, R. Immich, E. R. Madeira, Multimedia services placement
algorithm for cloud–fog hierarchical environments, Computer Com-
munications 191 (2022) 78–91. doi:10.1016/j.comcom.2022.04.009.

[28] R. Mahmud, S. N. Srirama, K. Ramamohanarao, R. Buyya, Quality of
experience (qoe)-aware placement of applications in fog computing
environments, Journal of Parallel and Distributed Computing 132
(2019) 190–203. doi:10.1016/j.jpdc.2018.03.004.

[29] H. Badri, T. Bahreini, D. Grosu, K. Yang, Energy-aware application
placement in mobile edge computing: A stochastic optimization ap-
proach, IEEE Transactions on Parallel and Distributed Systems 31 (4)
(2020) 909–922. doi:10.1109/TPDS.2019.2950937.

[30] Y. Li, W. Liang, J. Li, Profit Maximization for Service Placement
and Request Assignment in Edge Computing via Deep Reinforcement
Learning, Association for Computing Machinery, New York, NY,
USA, 2021, p. 51–55. doi:10.1145/3479239.3485673.

[31] Z. Zhou, Q. Wu, X. Chen, Online orchestration of cross-edge service
function chaining for cost-efficient edge computing, IEEE Journal
on Selected Areas in Communications 37 (8) (2019) 1866–1880.
doi:10.1109/JSAC.2019.2927070.

[32] M. Bagaa, T. Taleb, J. Bernal Bernabe, A. Skarmeta, Qos and
resource-aware security orchestration and life cycle management,
IEEE Transactions on Mobile Computing (2020) 1–1doi:10.1109/
TMC.2020.3046968.

[33] Z. Lin, S. Bi, Y.-J. A. Zhang, Optimizing ai service placement
and resource allocation in mobile edge intelligence systems, IEEE

Transactions on Wireless Communications 20 (11) (2021) 7257–
7271. doi:10.1109/TWC.2021.3081991.

[34] A. Hazra, P. K. Donta, T. Amgoth, S. Dustdar, Cooperative trans-
mission scheduling and computation offloading with collaboration of
fog and cloud for industrial iot applications, IEEE Internet of Things
Journal (2022) 1–1doi:10.1109/JIOT.2022.3150070.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–
533. doi:10.1038/nature14236.

[36] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction,
A Bradford Book, Cambridge, MA, USA, 2018.

[37] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, D. I. Kim, Applications of deep reinforcement learning in
communications and networking: A survey, IEEE Communications
Surveys Tutorials 21 (4) (2019) 3133–3174. doi:10.1109/COMST.2019.
2916583.

[38] Y. Hao, M. Chen, H. Gharavi, Y. Zhang, K. Hwang, Deep reinforce-
ment learning for edge service placement in softwarized industrial
cyber-physical system, IEEE Transactions on Industrial Informatics
17 (8) (2021) 5552–5561. doi:10.1109/TII.2020.3041713.

[39] J. Pei, P. Hong, M. Pan, J. Liu, J. Zhou, Optimal vnf placement
via deep reinforcement learning in sdn/nfv-enabled networks, IEEE
Journal on Selected Areas in Communications 38 (2) (2020) 263–278.
doi:10.1109/JSAC.2019.2959181.

[40] R. M. Nauss, The elastic generalized assignment problem, Journal of
the Operational Research Society 55 (12) (2004) 1333–1341. arXiv:

10.1057/palgrave.jors.2601806, doi:10.1057/palgrave.jors.2601806.
[41] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual

(2021).
URL https://www.gurobi.com

[42] S. D. Jena, J.-F. Cordeau, B. Gendron, Dynamic facility location
with generalized modular capacities, Transportation Science 49 (3)
(2015) 484–499. arXiv:10.1287/trsc.2014.0575, doi:10.1287/trsc.

2014.0575.
[43] A. Silva, D. Aloise, L. C. Coelho, C. Rocha, Heuristics for the

dynamic facility location problem with modular capacities, European
Journal of Operational Research 290 (2) (2021) 435–452. doi:10.

1016/j.ejor.2020.08.018.
[44] J. Martín-Pérez, L. Cominardi, C. J. Bernardos, A. de la Oliva,

A. Azcorra, Modeling mobile edge computing deployments for low
latency multimedia services, IEEE Transactions on Broadcasting
65 (2) (2019) 464–474. doi:10.1109/TBC.2019.2901406.

[45] Y. Dang, H. Cheng, F. Li, S. Yang, Research on fairness algorithm of
user allocation problem in moba edge gaming, in: 2022 IEEE 96th
Vehicular Technology Conference (VTC2022-Fall), 2022, pp. 1–5.
doi:10.1109/VTC2022-Fall57202.2022.10012913.

[46] Y. Chen, J. Liu, Y. Cui, Inter-player delay optimization in multiplayer
cloud gaming, in: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), 2016, pp. 702–709. doi:10.1109/CLOUD.2016.

0098.
[47] P. Brucker, Scheduling Algorithms, Springer, 2007.
[48] S. K. C. Chekuri, A ptas for the multiple knapsack problem, SIAM

Journal on Computing (35) (2006) 713–728.
[49] M. Suznjevic, O. Dobrijevic, M. Matijasevic, Mmorpg player actions:

Network performance, session patterns and latency requirements
analysis, Multimedia Tools and Applications 45 (1) (2009) 191–214.
doi:10.1007/s11042-009-0300-1.

[50] C. Quadri, M. Zignani, L. Capra, S. Gaito, G. P. Rossi, Multidi-
mensional human dynamics in mobile phone communications, PLOS
ONE 9 (7) (2014) 1–12. doi:10.1371/journal.pone.0103183.

[51] Telecom Italia big data challenge (2016). [link].
URL http://www.telecomitalia.com/bigdatachallenge

[52] R. Cleveland, W. S. Cleveland, J. E. McRae, I. J. Terpenning, Stl: A
seasonal-trend decomposition procedure based on loess (with discus-
sion), 1990.

Quadri et al.: Preprint submitted to Elsevier Page 20 of 21

https://doi.org/10.1109/GLOBECOM46510.2021.9685952
https://doi.org/10.1109/GLOBECOM46510.2021.9685952
https://doi.org/10.1109/JIOT.2021.3132849
https://doi.org/10.1109/JIOT.2021.3132849
https://doi.org/10.1109/TNET.2020.3025985
https://doi.org/10.1016/j.comnet.2022.109028
https://doi.org/10.1016/j.comnet.2022.109028
https://doi.org/10.1109/INFOCOM.2019.8737385
https://doi.org/10.1109/INFOCOM.2019.8737385
https://doi.org/10.1109/INFOCOM.2019.8737368
https://doi.org/10.1109/INFOCOM.2019.8737449
https://doi.org/10.1109/ICDCS47774.2020.00036
https://doi.org/10.1109/TNSM.2019.2918637
https://doi.org/10.1016/j.comcom.2022.04.009
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1109/TPDS.2019.2950937
https://doi.org/10.1145/3479239.3485673
https://doi.org/10.1109/JSAC.2019.2927070
https://doi.org/10.1109/TMC.2020.3046968
https://doi.org/10.1109/TMC.2020.3046968
https://doi.org/10.1109/TWC.2021.3081991
https://doi.org/10.1109/JIOT.2022.3150070
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1109/TII.2020.3041713
https://doi.org/10.1109/JSAC.2019.2959181
http://arxiv.org/abs/10.1057/palgrave.jors.2601806
http://arxiv.org/abs/10.1057/palgrave.jors.2601806
https://doi.org/10.1057/palgrave.jors.2601806
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/10.1287/trsc.2014.0575
https://doi.org/10.1287/trsc.2014.0575
https://doi.org/10.1287/trsc.2014.0575
https://doi.org/10.1016/j.ejor.2020.08.018
https://doi.org/10.1016/j.ejor.2020.08.018
https://doi.org/10.1109/TBC.2019.2901406
https://doi.org/10.1109/VTC2022-Fall57202.2022.10012913
https://doi.org/10.1109/CLOUD.2016.0098
https://doi.org/10.1109/CLOUD.2016.0098
https://doi.org/10.1007/s11042-009-0300-1
https://doi.org/10.1371/journal.pone.0103183
http://www.telecomitalia.com/bigdatachallenge
http://www.telecomitalia.com/bigdatachallenge

Multi-user edge service orchestration based on Deep Reinforcement Learning

[53] L. Kleinrock, Time-shared systems: A theoretical treatment, Journal
of the ACM (JACM) 14 (2) (1967) 242–261.

[54] M. Papandrea, K. K. Jahromi, M. Zignani, S. Gaito, S. Giordano, G. P.
Rossi, On the properties of human mobility, Computer Communica-
tions 87 (2016) 19–36. doi:10.1016/j.comcom.2016.03.022.

[55] Riot Games (2021). [link].
URL https://developer.riotgames.com/

[56] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, W. Zaremba, Openai gym (2016). arXiv:1606.01540.

[57] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, H. Su,
J. Zhu, Tianshou: A highly modularized deep reinforcement learning
library, arXiv preprint arXiv:2107.14171 (2021).

[58] H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with
double q-learning, arXiv preprint arXiv:1509.06461 (2015). arXiv:

1509.06461.
[59] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience

replay, arXiv preprint arXiv:1511.05952 (2016). arXiv:1511.05952.
[60] Q. Luo, S. Hu, C. Li, G. Li, W. Shi, Resource scheduling in edge

computing: A survey, IEEE Communications Surveys Tutorials 23 (4)
(2021) 2131–2165. doi:10.1109/COMST.2021.3106401.

[61] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, X. Costa-Perez,
Deepcog: Cognitive network management in sliced 5g networks with
deep learning, in: IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications, 2019, pp. 280–288. doi:10.1109/INFOCOM.

2019.8737488.
[62] S. Fujimoto, H. van Hoof, D. Meger, Addressing function approxi-

mation error in actor-critic methods, in: J. Dy, A. Krause (Eds.), Pro-
ceedings of the 35th International Conference on Machine Learning,
Vol. 80 of Proceedings of Machine Learning Research, PMLR, 2018,
pp. 1587–1596.

[63] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms (2017). doi:10.48550/ARXIV.1707.

06347.
[64] P. K. Donta, S. N. Srirama, T. Amgoth, C. S. R. Annavarapu, Survey

on recent advances in iot application layer protocols and machine
learning scope for research directions, Digital Communications and
Networks 8 (5) (2022) 727–744. doi:10.1016/j.dcan.2021.10.004.

A. Background traffic reconstruction
The network delay depends on the time for traversing the

base station, the delay on backhaul links and processing time
at the facility. We assume that the delay experienced by users
is entirely caused by the background traffic and that: (i) each
base station is properly equipped with enough capacity to
process all the amount of traffic demand generated according
to its weekly pattern; (ii) the background traffic from each
base station is routed to the closest facility; (iii) the backhaul
delay is negligible; (iv) the processing time at facility is a
function of the background traffic to be managed. To map
the amount of traffic to the network delay, we apply the
results in [53] where for time-shared systems the processing
time grows exponentially. In particular, we use the following
equation:

𝑑 = 𝑑𝑚𝑖𝑛
1− 𝑙

𝜂𝐿𝑚𝑎𝑥

(18)

where 𝑑𝑚𝑖𝑛 is the minimum time when no traffic is present, 𝑙
is the current level of traffic, 𝐿𝑚𝑎𝑥 is the maximum level of
traffic that can be handled and 𝜂 > 1 (we use 𝜂 = 1.1) con-
trols the maximum increment of delay. In our experiments,
we model the BS delay assuming 𝑑𝑚𝑖𝑛 = 1𝑚𝑠 and 𝐿𝑚𝑎𝑥different for each base station according to assumption (i).

This configuration leads to a maximum delay for traversing
BS of 10 ms. As for the facility processing time, we consider
𝑑𝑚𝑖𝑛 = 3𝑚𝑠, while 𝐿𝑚𝑎𝑥 is equal for all facilities and is
equal to the peak of background traffic uniformly distributed
over all facilities. Based on these considerations, 𝑅𝑇𝑇 =
2𝑑𝐵𝑆 + 𝑑𝑓 is bounded between 5ms and 50ms.

B. Datasets
B.1. Call Detail Records (CDRs) dataset

Call Detail Records (CDRs) dataset gathers the phone
activities of about one million subscribers to one of the
largest Italian mobile operators [50]. This dataset covers the
metropolitan area of Milan for a time period of 9 weeks
and provides the approximate location of subscribers with
a granularity of associated base stations. The dataset con-
tains about 100 million calls, 52 million text messages, and
61 million Internet records. Each record is provided with
the anonymized subscriber identity, the timestamp, and the
identification number together with the toponymic of the
base station where the subscriber was registered when he/she
performed the activity. For privacy and security reasons, the
location information of each record does not include the GPS
location of the base station. Therefore, we employed the web
service LocationAPI offered by UnwiredLabs6 to retrieve
the approximated GPS location.
B.2. TIM BigData Challenge

This dataset has been provided by Telecom Italia Mobile
(TIM), as part of their Big Data Challenge initiative [51],
which contains mobile Internet traffic information over a
time period of 2 months aggregated over 10-minute time
intervals, according to a regular-cell (235x235𝑚2) spatial
tessellation of the city of Milan. For privacy and security
reasons the information about the mobile operator released
the dataset by obfuscating the actual amount of traffic using
a custom function that preserves the proportionality.
B.3. MOBA matches dataset

We collect information about match creation requests
of the popular Multiplayer Online Battle Arena (MOBA)
League of Legends (LoL) through the public APIs service
provided by the Riot Games developers [55]. We collected
more than 7 million matches played for a time period of
almost 2 years. We started from a small seed of users
whose ID is publicly available. and we perform a bread-
first exploration. For each user, we collect all the matches
played within a specific period by the user along with all
the other players involved in the matches. Due to the limited
amount of requests per hour allowed by free account APIs,
we were not able to exhaustively sample all the match
requests, so we stopped the crawling task as soon as we
had collected sufficient data for reconstructing the pattern
of service request generation.

6UnwiredLabs available at https://unwiredlabs.com/

Quadri et al.: Preprint submitted to Elsevier Page 21 of 21

https://doi.org/10.1016/j.comcom.2016.03.022
https://developer.riotgames.com/
https://developer.riotgames.com/
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.05952
https://doi.org/10.1109/COMST.2021.3106401
https://doi.org/10.1109/INFOCOM.2019.8737488
https://doi.org/10.1109/INFOCOM.2019.8737488
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.1016/j.dcan.2021.10.004

	Introduction
	Background and related work
	Scenario
	System model
	Physical network
	Service layer
	Orchestration layer
	Orchestration mechanism and goal

	Mathematical modeling
	DQN modeling
	State model
	Action model
	Action implementation
	Reward function

	Theoretical analysis
	Environment setup
	Physical network
	Service
	Agent

	Results
	Learning phase
	Policy evaluation
	Evaluation on higher system load
	Evaluation on different temporal dynamics
	Computational efficiency

	Discussion
	Conclusions
	Background traffic reconstruction
	Datasets
	Call Detail Records (CDRs) dataset
	TIM BigData Challenge
	MOBA matches dataset

