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Temporal and evolving networks 
Definitions, Formalisms, and Open Questions 

Background 
frequent subgraph based methods and 
reasons to choose GERs

Graph evolution rules 
definitions, formalisms, and visualization 

Algorithms and extensions 
Existing algorithms and a null model extension

Real-world case studies 
Examples of application to social, 
communication and Web3 networks



Temporal 
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DEFINITIONS, FORMALISMS AND OPEN QUESTIONS
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Temporal networks
CHALLENGES AND DATA SOURCES
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• An interesting but yet not fully explored field, mainly 
due to the lack of temporal data 

• Thanks to the web3 development, we have enough 
data to develop solid temporal methodologies

Blockchain-based online 
social netoworks

Non-fungible tokens

Complementary currency

Stable coins

Social networks based on a reward-system for 
content creator and curators 

Examples: Steemit, Hive,  and Galxe

Networks of NFT trades on different markets Examples:  
CRyptokitties, OpenSea,  and Decentraland

Exchange of a complementary currency through the 
blockchain technology. Examples: Sarafu, and Circle 

WEB3 data
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Temporal networks modeling
A COMPREHENSIVE TAXONOMY
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Edge  
list

Interval model 
𝒢 = {G1, G2, …GT}

Growing 
Projection 

GGP
[1,4)

Snapshot 
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GSP
[1,4)

Interval 
list

Evolving 
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The growing project ion considers 
maximum one edge for each couple of 
nodes, with the label and timestamp 
corresponding to the most recent (max ts) 
or the least recent (min ts) one, within the 
selected interval (for instance  like in 
the figure).

[1,4)

The snapshot projection considers all 
inserted edge for each couple of 
nodes, with the relative timestamps, 
within the selected interval.

The evolving projection embeds 
in a single edge between couple 
of nodes all potential multiple 
edges happened in the selected 
interval, with a label that 
encodes the evolution.



Background
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Frequent subgraph based methods
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• Search for frequent 
subgraphs in the real 
graph; 

• Shuffle the real graph 
into  null realizations 

• Search for frequent 
subgraph in each 
realization 

• Use for instance the z-
score to get the motifs 
(subgraphs that are 
more frequent in the real 
graph wrt to the null 
model realizations)

n
Search all frequent 

subgraphs

Given a set of  -nodes 
subgraphs to search 
(graphlet), get their 

frequency in the graph 

i
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Insert here the context of the slide

Mining and Analysing Temporal Netowks With Graph Evolution Rules

REASONS WHY 

Graph evolution rules
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Graph evolution rules mining can detect 
evolutionary behaviors, while avoiding any 

a-priori mechanism 

Several models, mechanisms and measures have 
been proposed to describe the network growth

BUT
• They assume that the growth is guided 

by a single parameterized mechanism 
• Identifying which mechanism plays a 

more important role is challenging

A B

C Tradic 
Closure



Graph Evolution 
rules

DEFINITIONS, FORMALISMS AND VISUALIZATION
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Rules
COMPOSITION AND MEANING
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Computer Science Dept. @ UniMI CONNETS Lab 7

Precondition Postconditiont0
t1Body Head

Antecedent Consequent

Evomine e LFR li chiama precondition e postcondition, 
GERM e TPminer head e body 
DGR antecedent e consequent

A rule matching 
(being isomorphic) 
to the precondition

will probably (frequently) 
evolve into one matching 

the postcondition
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GER visualizations
TWO ALTERNATIVES
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Precondition Postcondition
Compact version

Thanks to the 
antimonotonicity 

property, there’s one 
pre-condition for each 

post-condition 

So we can just visualize 
the post condition 

(with colored edges)
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Support
AKA FREQUENCY OF A RULE
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s : 100

s : 120

s : 50
s : 70

s : 170

s : 110

s : 90

Support threshold σ ≥ 100 • The support is a fundamental parameter in ger mining 
algorithms because it filters the patterns to determine which are 
frequent, and so can be considered as rules 

• In the data mining field, it correspond to the frequency of the 
pattern 

• In graphs, it can’t be simply the number of occurrences of the 
pattern because it should satisfy the anti-monotonicity property

pq q ⊂ p
σ(q) ≥ σ(p)

Intuitively, everytime we see a pattern 
matching , there is also  because  is a 

subset of , so ’s support should be higher
p q q

p q
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Support
MINIMUM IMAGE BASED
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(c) Four isomorphisms (columns) and unique mappings (rows)(b) Subgraph p(a) Input graph G

σ(p, G) = 2
minimum of the 

number of unique 
mappings for the 

nodes in the pattern

MIB SUPPORT:
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GSpan
MINIMUM DFS CODE
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A graph (or subgraph) can be described 
through a list of 5-tuple, called DFS code:

label of 
node j

label of edge 
between  and  i j

label of 
node i

destination 
node

source 
node

The multiple DFS code for a graph can 
be lexicographically ordered to obtain 

the minimum DFS code 

DFScode1 = (0,1), (1,2), (2,0), (2,3), (3,1), (1,4)

DFScode2 = (0,1), (1,2), (2,0), (2,3), (3,0), (0,4)

DFScode3 = (0,1), (1,2), (2,0), (2,3), (3,0), (2,4)

0

00 1

1

12

2

2

3 33 444

• Three of the many possible 
 to describe  are listed 

below 
• Among the listed,  is the 

minimum

DFScode G

DFScode2

MIN

(i, j, l(i), l(i, j), l( j))
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GSpan
DFS TREE
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• Each node of the DFS Tree is a DFScode; 
• The  level contains DFS codes for graphs 

with  edges 
• The  level is obtained through rightmost-

extension of the parent node 
• If a DFScode is not minimum or not 

frequent, the tree is pruned on that node 
(nothing will be frequent coming from that 
branch) 

• Setting a maximum of edges (levels of the 
tree), the DFS tree is expanded up to the 
specified level and all the subgraphs in the 
tree are frequent

nth

n − 1
nth



Algorithms



Alessia Galdeman CONNETS Lab @ UniMIMining and Analysing Temporal Netowks With Graph Evolution Rules

GERM [1]
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Graph Representation

Support

Rule definition

s = 1000

17
[1] Berlingerio, M., Bonchi, F., Bringmann, B., and Gionis, A. Mining graph evolution rules. In joint European conference on machine learning and knowledge discovery in databases (2009), Springer, pp. 115–130.

• Algorithm applied to the last graph 
of a growing projection sequence:  
a single edge per couple of nodes, if 
multiple exists choose the one with 
minimum timestamp (first 
interaction) 

• Can be applied to undirected graphs 
only 

• The evolution is tracked along the 
whole timespan 

• The body is extracted from the 
head removing the edges with 
maximum timestamp  

• The head and the body must 
be connected graphs 

• Classical MIB support 
• Support of a rule = support of the head 
• Include also a confidence measure: 

sup(head)
sup(body)
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Graph Representation

Evomine [2]
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Support

Rule definition

s = 1000
• Union Graph (Evolving 

projection): the label on the 
edges encodes the evolution 

• Can be applied to directed and 
undirected graphs 

• The evolution is tracked within 
consecutive timestamps 

• The only timestamps on the 
edges are  

• The body (pattern without the 
edges with  timestamp) must 
have the same nodes as the 
head 

• From body to head something 
must change, labels or edges 

• The union graph of the rule 
must be connected 

t0, t1

t1

• Classical MIB support 
• Event-based support: 

• creates event graphs: subgraphs 
including the neighborhood of each 
event (edge insertion, node relabeling 
and so on) 

• count the event graphs in which a 
rule appears

[2] Scharwächter, E., Müller, E., Donges, J., Hassani, M., and Seidl, T. Detecting change processes in dynamic networks by frequent graph evolution rule mining. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (2016), IEEE, pp. 1191–1196. 
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Comparison
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GERM EvoMine

Mining algorithm Extended gSpan Extended gSpan

Graph  
representation Last graph of a growing projection sequence

• Pairwise union graph sequence (evolving 
projection) 

•  Event graphs
Support MIB MIB + Event graph

Confidence not defined

Type of graph undirected directed and undirected
Type of evolution spanning all timestamp, relative-time rules consecutive timestamps only 

Evolutionary  
constraints head and body must be connected

• union graph of the rule must be connected,  
• head and body has the same node set 
• from body to head something must evolve 

Examples of use

• When the whole temporal span is 
important,  

• it makes possible to study the speed of 
evolution too 

• When the graph is directed,  
• we have relabeling and edge deletion too, 
• when we’re interested in more close 

evolution (consecutive timestamps only),  
• it can be applied for anomaly detection

sup(head )
sup(body)
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[3] Leung, C., Lim, E.-P., Lo, D., and Weng, J. Mining interesting link formation rules in social networks. pp. 209–218. 
[4] Yuuki, M., Ozaki, T., and Takenao, O. Mining interesting patterns and rules in a time-evolving graph. Lecture Notes in Engineering and Computer Science 2188 (03 2011) 
[5] Vaculík, K. A versatile algorithm for predictive graph rule mining. In ITAT (2015), pp. 51–58 

LFR [3] TP-MINER [4]

DGR-MINER [5]

• The focus is on the process that drives single 
links formation; 

• For this reason, LF rules are more restrictive 
with respect to the others, but the mining time 
descreases; 

• A null model is integrated to extract 
meaningful rules; 

• They have a tailored support measure and also 
consider a confidence measure

• It is designed for labeled multigraph, both 
directed and undirected  

• Proposes its own graph representations and 
support measures 

• It proposes the idea of representative time 
pattern; 

• The algorithm extract the body from the head in 
the same way as the other ones; 

• Builds a DAG from graph evolution rules  
• The confidence measure takes into consideration                                                        

the evolution from body to head

1

0

1

0

3 3

y0 y0 y0

x0

x0



Support is not 
all you need
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Null model
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Problem

The support alone is not enough to 
measure if a pattern (rule) is representative 

of the evolution of the graph: 
A pattern can be frequent as a 

consequence of a general process of a 
dynamic network, not telling anything on 

how the network we’re studying is evolving

Solution
Apply a null model on the graph 

evolution rules algorithm

• Apply the graph evolution rules algorithm 
on the real graph 

• Apply the graph evolution rules algorithm 
on a randomized version of the graph 

• The rules whose support is higher in the 
real graph are significative
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Microcanonical Randomized Reference Models [6]  
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MRRM

Graph representation

MRMMs 
categories

Timeline 
representation

Snapshot 
representation

What’s 
preserving

Topology Timeline shuffling Sequence shuffling

Temporal 
distribution Link shuffling Snapshot shuffling

3
1

21

1

1

22

2

3

3
t

(a, b)
(b, c)
(a, c)

Original graph
Preserving Topology Preserving Temp. Distribution 

[6]  Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." SIAM Review 64.4 (2022): 763-830.
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Methodology
PIPELINE
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Temporal 
graph 𝒢*

GERM 
algorithm

Graph evolution 
rules on 𝒢*

Timeline 
shuffling  

x50

Temporal 
graph 𝒢i

GERM 
algorithm

Graph evolution 
rules on 𝒢i

Significant 
graph evolution 

rules

z-score 
test



Real world 
case studies

IN SOCIAL, COMMUNICATION 
AND WEB3 BLOCKCHAIN-

BASED NETWORKS
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DBLP co-citation network [7]
EXAMPLE OF THE IMPACT OF THE NULL MODEL ON THE GERM ALGORITHM

26
[7] Galdeman, Alessia, Matteo Zignani, and Sabrina Gaito. "Unfolding temporal networks through statistically significant graph evolution rules.” 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023.
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(a) (b) (c)

High support  
(14th)

Low z-score  

Rule apparently 
important but actually 

NOT worthy of attention

Low support  
(over 100th)

High z-score

Rule apparently NOT 
important but actually 

worthy of attention

(a) (b)
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Comparing web3 platforms through GER [8]
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1 2 3

Web3 data 
modeled as 

temporal 
networks

Graph evolution 
rule mining with 

EvoMine
GER PROFILE

THE PIPELINE

Specifically we worked on  

•  two networks extracted from operations (transfer and 
follow) on Steemit, that is a blockchain-based online 
social network 

•  two networks from NFT exchanged on two different 
markets (Cryptokitties and OpenSea)

• GER profiles show the distribution over types 
of evolution rules for a given dynamic graph 

• The comparison of the GER profiles for 
different graphs makes possible to find 
similar evolutionary behaviors

GER with 
supports

GER 
profile

[8] Galdeman, Alessia, Matteo Zignani, and Sabrina Gaito. "Disentangling the Growth of Blockchain-based Networks by Graph Evolution Rule Mining." 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2022.
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THE GER PROFILE
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Not in the 
frequent GER 

set for the 
cryptokitties 

market 

Frequent only in 
Steemit follow 
(the only social 

network) 

Both cases are explainable with the nature of the network itself 

t0 t1 t2
221

111112

122

1ϵ1
1ϵ1

ϵ1ϵ
ϵ11

(a) (b)

(a)
(b)

Body Head
t0
t1

t0 t1 t2
221

111112

122

1ϵ1
1ϵ1

ϵ1ϵ
ϵ11

(a) (b)

(a)
(b)

Body Head
t0
t1
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Comparing web3 platforms through GER3



Now let’s play
https://github.com/alessiaatunimi/geranio
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