Mining and analysing temporal networks with graph evolution rules

Alessia Galdeman

Computer Science UNIVERSITÀ DEGLI STUDI DI MILANO

Outline

Temporal and evolving networks Definitions, Formalisms, and Open Questions

Background frequent subgraph based methods and reasons to choose GERs

Graph evolution rules definitions, formalisms, and visualization

Algorithms and extensions Existing algorithms and a null model extension

Real-world case studies Examples of application to social, communication and Web3 networks

Temporal Networks

DEFINITIONS, FORMALISMS AND OPEN QUESTIONS

Temporal networks CHALLENGES AND DATA SOURCES

- An interesting but yet not fully explored field, mainly due to the lack of temporal data
- Thanks to the web3 development, we have enough data to develop solid temporal methodologies

Blockchain-based online social netoworks

Social networks based on a reward-system for content creator and curators Examples: Steemit, Hive, and Galxe

Non-fungible tokens 🕶

Networks of NFT trades on different markets Examples: CRyptokitties, OpenSea, and Decentraland

Complementary currency

Exchange of a complementary currency through the blockchain technology. Examples: Sarafu, and Circle

Stable coins

Steemit, Hive, and Galxe

Alessia Galdeman

CONNETS Lab @ UniMI

4

WEB3 data

Temporal networks modeling A COMPREHENSIVE TAXONOMY

Alessia Galdeman

CONNETS Lab @ UniMI

Frequent subgraph based methods

- Search for frequent subgraphs in the real
- Shuffle the real graph into *n* null realizations
- Search for frequent subgraph in each
- Use for instance the zscore to get the motifs (subgraphs that are more frequent in the real graph wrt to the null model realizations)

Graph evolution rules

REASONS WHY

Several models, mechanisms and measures have been proposed to describe the network growth

BUT

Tradic Closure

- They assume that the growth is guided by a single parameterized mechanism
- Identifying which mechanism plays a more important role is challenging

Graph evolution rules mining can detect evolutionary behaviors, while avoiding any a-priori mechanism

Graph Evolution rules

DEFINITIONS, FORMALISMS AND VISUALIZATION

Rules

COMPOSITION AND MEANING

A rule matching (being isomorphic) to the precondition will probably (frequently) evolve into one matching the postcondition

Alessia Galdeman

GER visualizations

TWO ALTERNATIVES

Alessia Galdeman

CONNETS Lab @ UniMI

Support AKA FREQUENCY OF A RULE

- The support is a fundamental parameter in ger mining algorithms because it filters the patterns to determine which are frequent, and so can be considered as rules
- In the data mining field, it correspond to the **frequency** of the pattern
- In graphs, it can't be simply the number of occurrences of the pattern because it should satisfy the **anti-monotonicity property**

Intuitively, everytime we see a pattern matching p, there is also q because q is a subset of p, so q's support should be higher

Support MINIMUM IMAGE BASED

(a) Input graph G

(b) Subgraph p

(c) Four isomorphisms (columns) and unique mappings (rows)

GSpan MINIMUM DFS CODE

A graph (or subgraph) can be described through a list of 5-tuple, called DFS code:

The multiple DFS code for a graph can be lexicographically ordered to obtain the minimum DFS code

 $DFScode_1 = (0,1), (1,2), (2,0), (2,3), (3,1), (1,4)$

 $\underline{\mathsf{MIN}} \ DFScode_2 = (0,1), (1,2), (2,0), (2,3), (3,0), (0,4)$

 $DFScode_3 = (0,1), (1,2), (2,0), (2,3), (3,0), (2,4)$

GSpan DFS TREE

- Each node of the DFS Tree is a DFScode;
- The n^{th} level contains DFS codes for graphs with n-1 edges
- The n^{th} level is obtained through rightmostextension of the parent node
- If a DFScode is not minimum or not frequent, the tree is pruned on that node (nothing will be frequent coming from that branch)
- Setting a maximum of edges (levels of the tree), the DFS tree is expanded up to the specified level and all the subgraphs in the tree are frequent

Algorithms

GERM [1]

] Berlingerio, M., Bonchi, F., Bringmann, B., and Gionis, A. Mining graph evolution rules. In joint European conference on machine learning and knowledge discovery in databases (2009), Springer, pp. 115–130

whole timespan

Evomine [2]

- The only timestamps on the edges are t_0, t_1
- The body (pattern without the edges with t_1 timestamp) must have the **same nodes** as the head
- From body to head something must change, labels or edges
- The union graph of the rule must be **connected**

Support

- Classical **MIB** support
- Event-based support:
 - creates event graphs: subgraphs including the neighborhood of each event (edge insertion, node relabeling and so on)
 - count the event graphs in which a rule appears

Mining and Analysing Temporal Netowks With Graph Evolution Rules

undirected graphs

The evolution is tracked within

consecutive timestamps

Alessia Galdeman

CONNETS Lab @ UniM

Comparison

	GERM	EvoMine
Mining algorithm	Extended gSpan	Extended gSpan
Graph representation	Last graph of a growing projection sequence	 Pairwise union graph sequence (evolving projection) Event graphs
Support	MIB	MIB + Event graph
Confidence	$\frac{sup(head)}{sup(body)}$	not defined
Type of graph	undirected	directed and undirected
Type of evolution	spanning all timestamp, relative-time rules	consecutive timestamps only
Evolutionary constraints	head and body must be connected	 union graph of the rule must be connected, head and body has the same node set from body to head something must evolve
Examples of use	 When the whole temporal span is important, it makes possible to study the speed of evolution too 	 When the graph is directed, we have relabeling and edge deletion too, when we're interested in more close evolution (consecutive timestamps only), it can be applied for anomaly detection

LFR [3]

- The focus is on the process that drives single links formation;
- For this reason, LF rules are more restrictive with respect to the others, but the mining time descreases;
- A null model is integrated to extract meaningful rules;
- They have a tailored support measure and also consider a confidence measure

TP-MINER [4]

- It proposes the idea of representative time pattern;
- The algorithm extract the body from the head in the same way as the other ones;
- Builds a DAG from graph evolution rules

(*B*0)

• The confidence measure takes into consideration the evolution from body to head

• It is designed for labeled multigraph, both

- directed and undirected
- Proposes its own graph representations and support measures

[3] Leung, C., Lim, E.-P., Lo, D., and Weng, J. Mining interesting link formation rules in social networks. pp. 209-218.

DGR-MINER^[5]

[4] Yuuki, M., Ozaki, T., and Takenao, O. Mining interesting patterns and rules in a time-evolving graph. Lecture Notes in Engineering and Computer Science 2188 (03 2011)

[5] Vaculík, K. A versatile algorithm for predictive graph rule mining. In ITAT (2015), pp. 51–58

Mining and Analysing Temporal Netowks With Graph Evolution Rules

Alessia Galdeman

CONNETS Lab @ UniM

Support is not all you need

Null model

Problem

The support alone is **not enough** to measure if a pattern (rule) is **representative** of the evolution of the graph: *A pattern can be frequent as a* consequence of a general process of a dynamic network, not telling anything on how the network we're studying is evolving

Solution

Apply a **null mode**l on the graph evolution rules algorithm

- Apply the graph evolution rules algorithm on the **real graph**
- Apply the graph evolution rules algorithm on a **randomized version** of the graph
- The rules whose support is higher in the real graph are **significative**

Microcanonical Randomized Reference Models [6]

[6] Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." SIAM Review 64.4 (2022): 763-830.

0

Methodology PIPELINE

CONNETS Lab @ UniMI

Real world case studies

IN SOCIAL, COMMUNICATION AND WEB3 BLOCKCHAIN-BASED NETWORKS

DBLP co-citation network [7]

EXAN

[7] Galdeman, Alessia, Matteo Zignani, and Sabrina Gaito. "Unfolding temporal networks through statistically significant graph evolution rules." 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023.

Alessia Galdeman

Comparing web3 platforms through GER [8]

EvoMino [2]

Specifically we worked on

- two networks extracted from operations (transfer and follow) on Steemit, that is a blockchain-based online social network
- two networks from NFT exchanged on two different markets (Cryptokitties and OpenSea)

• GER profiles show the distribution over types of evolution rules for a given dynamic graph

• The comparison of the GER profiles for different graphs makes possible to find similar evolutionary behaviors

8] Galdeman, Alessia, Matteo Zignani, and Sabrina Gaito. "Disentangling the Growth of Blockchain-based Networks by Graph Evolution Rule Mining." 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2022.

Alessia Galdeman

Comparing web3 platforms through GER³ THE GER PROFILE

EvoMine [2]

Now let's play

https://github.com/alessiaatunimi/geranio

Graph Evolution Rules ANalytics vIsualization tOolkit

Alessia Galdeman

Phd Student

 \square

@AlessiaGaldeman

alessia.galdeman@unimi.it

Alessia Galdeman

https://alessiaatunimi.github.io/

Thanks for your attention

References

[1] Berlingerio, M., Bonchi, F., Bringmann, B., and Gionis, A. Mining graph evolution rules. In joint European conference on machine learning and knowledge discovery in databases (2009), Springer, pp. 115–130.

[2] Scharwächter, E., Müller, E., Donges, J., Hassani, M., and Seidl, T. Detecting change processes in dynamic networks by frequent graph evolution rule mining. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (2016), IEEE, pp. 1191–1196.

[3] Leung, C., Lim, E.-P., Lo, D., and Weng, J. Mining interesting link formation rules in social networks. pp. 209–218.

[4] Yuuki, M., Ozaki, T., and Takenao, O. Mining interesting patterns and rules in a time-evolving graph. Lecture Notes in Engineering and Computer Science 2188 (03 2011)

[5] Vaculík, K. A versatile algorithm for predictive graph rule mining. In ITAT (2015), pp. 51–58

[6] Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." SIAM Review 64.4 (2022): 763-830.

[7] Galdeman, Alessia, Matteo Zignani, and Sabrina Gaito. "Unfolding temporal networks through statistically significant graph evolution rules." 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023.

[8] Galdeman, Alessia, Matteo Zignani, and Sabrina Gaito. "Disentangling the Growth of Blockchain-based Networks by Graph Evolution Rule Mining." 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2022.

Alessia Galdeman