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Abstract—Web3, one of the novel paradigms which may drive
the evolution of the future Web, is offering an invaluable volume
of data stored in the supporting blockchains. Researchers from
different fields such as network science, computational social
science and data mining, might benefit from these large col-
lections of temporal and heterogeneous data capturing different
kinds of interaction among people and between people and the
platforms. In this study we focus on a specific issue related to
these modern techno-social systems, i.e. the understanding of the
rules driving their growth. To reach this goal, we performed an
analysis based on graph evolution rules - GERs - on different
networks gathered from Web3 platforms such as Steemit or
OpenSea. Graph evolution rules mining is a frequency-based
method for evaluating network evolution which does not require
any prior growth process for disentangling how networks evolve.
By comparing the evolution rules of social network platforms and
asset trading services through GER profiles, we observe that some
evolution rules are common to all Web3 platforms, regardless of
the system specificity. On the other hand, in specific cases, the
frequency of graph evolution rules is influenced by the nature
of the platform: whereas social and token-transfer networks are
characterized by rules which increase network transitivity and
reciprocity, NFT trading networks, especially those specialized in
a specific type of digital asset, are driven by rules which form
trading chains. These findings suggest that the GER approach
and the GER profiles are a good starting point to get insights
into the evolutionary behavior of a network and to define a
classification of graph evolution rules.

Index Terms—graph evolution mining, blockchain-based plat-
forms, subgraph mining, evolution profile, graph evolution rule,
NFTs

I. INTRODUCTION

In the last years, we witnessed the emergence of novel
paradigms which are attempting to replace the current organi-
zation of Web 2.0, considered by many as over-centralized
around a few big companies. Among such paradigms, the
idea of platforms and software systems built on blockchain
technologies - namely Web3 - is gaining momentum so much
so that many online services have their own decentralized
counterpart in the Web3 world. For instance, blockchain online
social networks, such as Hive, Mind, or Steemit, are proposing
services similar to Twitter or Reddit; online games, cloud
storage systems, and gambling and betting platforms are a
few of the decentralized applications - DApps - currently
implemented on the most important blockchains. Moreover,
the Web3 ecosystem is also characterized by peculiar services,

such as Decentralized Finance (DeFi), where currencies are
exchanged without institutional intermediaries; Decentralized
Autonomous Organizations (DAOs), organizations that are
completely compliant with their smart contracts which can
be updated through the voting of the community; and non-
fungible token (NFT), a financial asset, linked to data stored
in the blockchain, that can be traded.

Despite the great debate on Web3 between enthusiasts and
skeptics, there is no doubt that all these kinds of services and
platforms supported by blockchain technologies offer a great
opportunity to researchers in different fields. In fact, through
the underlying blockchains, one can easily access a broad
set of data about modern techno-social systems; and, despite
the main online social platforms, data are publicly available,
validated, and accessible by interfacing with the blockchain.
Moreover, data from Web3 systems have two further char-
acteristics: i) each block of the blockchain has a validation
timestamp, so each record has temporal information associated
with it; and ii) each block may contain heterogeneous types
of information which capture the different way - social,
economical, financial - people interact through Web3 systems.
So, having a large volume of temporal and heterogeneous data
describing the networked structure of the interactions among
platforms’ users is crucial for facing tasks and issues related to
modern techno-social networks. Specifically, here we focus on
the growth of such networks from the perspective of the link
creation process, and we exploit the high-resolution temporal
data different Web3 systems provide.

Understanding and inferring how the networks behind large
techno-social systems form and grow are fundamental ele-
ments for the comprehension of the main processes driving the
evolution of such systems and for the identification of specific
patterns of growth which are consequences of the platform
design or of the users’ behavior. To reach these goals, in the
past years, many models, mechanisms, and measures describ-
ing the network growth from a link formation perspective have
been proposed, including preferential attachment, node fitness
[1], triadic closure [2], homophily [3], or node latent features
[4]. Most of these approaches rely on the assumption that the
growth is guided by a single parameterized mechanism, but
current techno-social networks are the result of different and
heterogeneous behaviors where different choices and mecha-



nisms occur [5]. For these reasons, for a better understanding
of which mechanisms are driving the network evolution and
avoiding a-priori mechanism, methods which rely only on the
identification of small frequent subgraphs evolving in time
[6] can be more effective in capturing the rules of growth
since they do not require specific assumptions on the processes
governing the growth.

In this paper, we adopt the latter approach based on the
mining of subgraph evolution rules to study the fundamen-
tal growth patterns characterizing different Web3 platforms.
Specifically, we leverage a state-of-art algorithm - EvoMine
- to extract graph evolution rules - GERs - from a collection
of high-resolution temporal annotated datasets gathered from
Web3 platforms. In short, a graph evolution rule is a pair of
small subgraphs where the second element - head - represents
the evolution of the first element - body. The main goal of
the algorithm is to compute how frequently the rule occurs
in the growth of the network. We apply the above method to
different Web3 services: a collection of trade networks where
the traded assets are NFTs, and social and transfer networks
extracted from the blockchain online social media Steemit. The
findings resulting from the analysis of the most frequent graph
evolution rules characterizing each platform have highlighted
two main aspects of the Web3 techno-social networks:

• the nature and the design of the different platforms impact
on the frequency of the graph evolution rules. In fact,
by comparing how evolution rules are distributed in the
platforms, we find that some rules are more frequent than
others, and those rules can be explained by taking into
account the type of the network. For instance, in an NTF
trading network specialized in a single type of NTF -
images of cats - rules based on the triadic closure process
are completely missing;

• despite the specificity of the systems - trading, transfer
and social networks - some evolution rules are common
to all the systems. In particular, GERs related to the
expansion of the neighborhood of a node are frequent in
all datasets. In fact, all Web3 systems are in an expansion
phase, as a consequence of their novelty;

To the best of our knowledge, this paper stands as the
first study on the growth of temporal networks coming from
modern Web3 platforms. In doing so, for describing the
growth of the networks, we have adopted an approach for
the identification of graph evolution rules which i) supports
an analysis without a prior assumption about the growth
processes; and ii) maintains a certain degree of readability
and explainability of the results since it returns rules based on
small subgraphs. Moreover, from a methodological viewpoint,
our approach allows generating a footprint of the network
growth - the GER profile - that can be used to compare how
two o more temporal networks evolve.

The paper is organized as follows. Section II provides a
brief introduction of Web3 platforms we hereby investigate:
blockchain online social networks and NFT trade networks;
and a review of methods for the extraction of graph evolution

rules. In Section III we describe the datasets collected from
Web3 platforms along with their peculiarities. The approach
for modelling, extracting and analyzing graph evolution rules
is presented in Section IV. Sections V and VI report the
main findings of the growth of the Web3 platforms and a
discussion about similarities and differences of the evolution
of the networks. Finally, Section VII concludes the paper,
pointing out possible future works.

II. BACKGROUND AND RELATED WORKS

The Web3 paradigm is quite a new framework in the Web
landscape, especially as far as regards the aspects directly
related to the blockchain technology supporting platforms and
services. To introduce this paradigm, first, we provide the
reader a brief overview of the Web3 platforms we treated
in our analysis: blockchain online social networks and NTF
trades. Then, we also review the main methods to extract graph
evolution rules from large-scale temporal networks.

A. Blockchain online social networks

Blockchain technology has enabled the development of
blockchain online social networks (BOSNs), providing data
storage and validation for these platforms. In their core BOSNs
replicate the main user experience of the main micro-blogging
and social media platforms such as Twitter, Reddit or Medium,
but they introduce token-economy aspects, such as a reward
system based on cryptocurrencies that promote high-quality
content. In fact, in these systems cryptocurrencies can be cre-
ated, exchanged, and used for validating both social operations
(follow, vote, comment) and economical transactions (transfer,
borrow tokens).

In this context, one of the most attractive and spread
platforms is Steemit [7]. Steemit is a blockchain social network
launched in March 2016, hosted on the Steem blockchain.
Steemit users can exchange goods and services using the
dedicated cryptocurrency, called STEEM. Furthermore, the
cryptocurrency powers a reward system that encourages net-
work growth by compensating users for their participation
on the platform. Web3 platforms such as Steemit offer a
rich data source for understanding the system’s dynamics and
the networked structure of its components, so much so that
the literature about BOSNs analysis is growing. Some works
leverage user content for bot detection [8] or text mining
tasks [9]. Other works focus on the relationship between
blockchain technology and social networks [10]–[12]. For
example, Chonan [13] and Kim et al. [14] have analyzed the
social network structure of the Steemit platform, while Guidi
et al. [15] have studied the graph of follow operations, and then
focus on other operation types [16]. When studying dynamic
systems BOSNs, temporal information plays an essential role,
so it is important to model the data as dynamic graphs and
study its temporal aspects. For example, Ba et al. [17] have
studied how cryptocurrency and graph evolution are related
to each other. The same authors have also conducted an
analysis on the network burstiness [18], focusing on the link
creation process and the claiming of rewards. Finally, the



interplay between social and economical network layers has
been investigated in [19] to cope with user migration across
Web3 platforms.

B. Non-fungible tokens - NFTs

An NFT is a blockchain-based data unit with a double
goal: first, it provides a unique certificate of ownership of a
digital object. Second, it attests to the uniqueness and non-
transferability of a digital asset. Thanks to this technology, it
is possible to track down the complete history of ownership
of an object and check its authenticity. In concrete terms,
an NFT can represent a variety of digital items, including
photographs, movies, and audio. As a consequence, several
contexts, such as art, gaming, and sports collectibles, utilize
NFTs to regulate and control digital objects. The birth of
the NFT market can be traced back to late 2017 when the
blockchain game Cryptokitties gained popularity. However, the
market remained dominated only by Crypokitties until July
2020 when it started to grow and in March 2021 reached a
peak of popularity, due to the selling of an artwork’s NFT for
$69.3 million. This purchase allowed the author, Beeple, to
reach one of the highest auction prices for a living artist.

The peculiar growth history of the NFTs market can explain
why the literature on them is currently in rapid growth.
Nadini et al. [20] conducted the first comprehensive quan-
titative overview of the NFTs market, including the overall
statistical properties, its evolution over time, a network-based
analysis, and a study about the predictability of NFT sales.
Other works present a more focalized analysis, for example,
Vasan et al. [21] analyzed the cryptoart ecosystem, while
Franceschet [22] focused on the creators-collectors network.
Other research studied the role of social media attention on
NFT trends [23], and the financial advantage that experienced
users gain in the NFT trading context [24].

C. Graph Evolution Rules - GERs

Our approach for describing the growth of networks related
to Web3 systems is mainly rooted in graph evolution rules.
Graph evolution rules mining is a frequency-based pattern
discovery method that allows analyzing the evolution of
temporal networks over time. The goal of graph evolution
rules (GERs) is to discover frequent local changes occurring
repeatedly throughout the network evolution [25]. Following
the association rules concept belonging to the data mining
field, GERs are composed of a precondition (called body) and
a postcondition (called head). The rules’ interpretation is that
a subgraph that matches the body will probably evolve into the
head, making the outcomes human-readable and explainable.
For instance, Fig. 1 shows a representation of a graph evolution
rule that indicates the presence of triadic closure.

Graph evolution rules are a powerful method that can help
reveal complex mechanisms in temporal networks. Moreover,
they enable the development of more accurate network evo-
lution models for predicting future network changes. The set
of graph evolution rules of a network can also be used to
distinguish it from other graphs, whose evolution is governed
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Fig. 1. Example of graph evolution rule. On the left a graph with two links
- grey arrows - created at time t0, while on the right the head of the rule
where the graph on the left evolves by adding the new link - green arrow -
at the successive timestamp t1.

by different mechanisms. The state-of-the-art methods that are
focused on detecting the topological evolutionary mechanisms
of a network share the same two steps methodology: first,
they extract rules via frequent subgraph mining, and then
they filter the output using quantities such as the support
and/or confidence measures. In the literature about graph
evolution rules, one of the first methods is GERM, developed
by Berlingerio et al. [25]. Rules identified by GERM detect
undirected edge insertion events, considering the relative time
differences. Edge removals and node and edge relabeling are
not captured. Another rule mining algorithm was proposed by
Leung et al. [26] and further adopted by Ozaki et al. [27].
The rules detected are called LFR (Link Formation Rule),
and their aim is to capture how directed links between a
source and a destination create. Both GERM and LFR al-
gorithms used the minimum image-based support [28] and
Gspan Frequent Subgraph mining [29]. Ozaki et al. [27] have
proposed an undirected version of LFR, along with a method
to find relationships between rules. Moreover, Vakulı́k [30] has
developed a method, called DGR miner, whose evolution rules
capture also edge deletion and relabeling. Lastly, EvomMine
[31] shares the same idea of DGR, allowing more advanced
evolution patterns than the simple edge insertion. Furthermore,
EvoMine’s authors have also proposed a novel type of support
measure. In this paper, we chose EvoMine to detect evolution
rules because it is the most complete one, and offer an alterna-
tive type of support measure. Other works on the identification
of evolution rules can be found in the literature, however, they
focus more on the evolution of attributes, ignoring [32] or
giving less importance [33] to the structural evolution of the
networks and to the rules driving their growth.

III. DATASETS

We conducted our analysis on datasets that represent the
two main trends in Web3 platforms. On one side we deal with
the blockchain online social network Steemit, an example of
converting the online services of the current social media into
applications for the Web3 world. On the other side, we ana-
lyzed an example of platforms and assets which are peculiar to
the Web3 paradigm, since they required characteristics of the



blockchain technology: NFTs. In the following, we illustrate
the details of the datasets chosen for the analysis.

A. Steemit dataset

The Steemit dataset records every user’s actions, called
operations, with a three-second granularity. The specific APIs
allow the gathering of all operations as transactions, organized
into three macro categories, as detailed in Guidi et al. [7]:
social, financial and management. However, here we focus
on two specific types: follow and transfer, which represent
respectively the most common type of social and financial
operations. Intuitively, each follow operation (u, v, t) records
that user u has started to follow user v at timestamp t. On
the other hand, every transfer operation (u, v, a, t) states that
user u transferred an amount a of cryptocurrency to user v at
timestamp t. In this study, we considered follow and transfer
operations of the first 3-month period, due to computational
constraints. Specifically, transactions present a daily timestamp
from December, 1 2016 to March, 1 2017. The data extraction
results in a total of 92803 follow operations and 42452 transfer
operations.

B. NFTs sales dataset

The NFTs sales dataset aggregates NFTs trades from dif-
ferent marketplaces (APIs): Cryptokitties, Atomic, Opensea,
Gods-unchained, and Decentraland. The data collection is
composed of 6.1 million trades of 4.7 million NFTs in 160
cryptocurrencies, primarily Ethereum and WAX, covering the
period from June 23, 2017 to April 27, 2021. In this study
we restrict the dataset for computational constraints to a 50-
days period. For the same reason, we select transactions within
two markets only: OpenSea and Cryptokitties, which were
the most active in the initial period. For each market, we
focus on the first period with transactions: from December
1, 2017 to January 19, 2018 for Cryptokitties market and
from February 4, 2018 to March 26, 2018 for OpenSea. In
this way, we collected a total of 255947 transactions on the
Cryptokitties market, and 23251 on OpenSea. CryptoKitties
is one of the world’s first blockchain games, where users
can collect and breed cats with unique characteristics that
define their appearance and traits. Born in November 2017,
it is based on the Ethereum network and it registered a really
quick and high peak in popularity when kitties start being
sold at extremely high prices (more than $100, 000). The NFT
exchange in this market concerns just a type of digital object,
i.e. photos of kitties. OpenSea is the largest marketplace for
NFTs, where users can exchange several types of rare digital
objects, such as art, music, sports, games, and so on. It was
founded in December 2017 and, like CryptoKitties, it relies
on the Ethereum blockchain technology.

IV. METHODOLOGY

To analyze the evolution of the Web3 networks, we applied
a graph evolution rules algorithm called EvoMine [31]. In
the next sections, we are going to define how we model
transactions and social operations into a graph representation.

TABLE I
DATASETS METRICS: SECOND AND THIRD COLUMNS INDICATE THE

ORDER AND THE SIZE OF EACH GRAPH, RESPECTIVELY; WHILE THE LAST
COLUMN SPECIFIES THE LENGTH OF THE GRAPH SEQUENCE.

Dataset Nodes Edges Timestamps
Steemit Follow 11004 92803 90
Steemit Transfer 2815 42452 90
NFT Cryptokitties 58906 255947 50
NFT OpenSea 4870 23251 50

Then, we detail the EvoMine method and specifically its event-
based support version.

A. Representation and modeling

We model the transactional data gathered from Web3 plat-
forms into directed, temporal graphs. All the four different
datasets share the same operation structure: every transaction
is a tuple (s, d, t), composed of a source s that performs an
operation (follow, money transfer, or NFT exchange) towards
a destination d at timestamp t. In the directed-temporal graphs,
each transaction is translated into a directed link from source
node s to destination node d with timestamp, or edge label,
t. Note that the temporal graphs are modeled with a sequence
of snapshots and not as a sequence of incremental graphs, to
satisfy the algorithm input format requirements. Specifically,
a snapshot graph for a time interval [t0, t1] (t1 > t0) is made
up by all the links whose timestamp is between t0 and t1.
The modeling results in four different graphs, whose size and
order are reported in Table I.

As a first step to understanding the evolution of these
networks, we observe the number of daily new nodes and
edges, depicted in the plots of Fig. 2. Specifically, Fig. 2a and
Fig. 2b show how the number of new edges changes over time;
while Fig. 2c and Fig. 2d depict the growth of emerging nodes.
The plot related to the NFT sales datasets (2a) highlights a
change in popularity of the two markets: Cryptokitties has
an initial peak, but then the number of new edges rapidly
decreases, on the other hand, OpenSea presents the opposite
behavior: a fast increase of the activities after the middle of
December 2017. The same observations stand for the trend of
daily new nodes, depicted in Fig. 2c. As regards the Steemit
follow (social) and transfer graphs, they share a common trait:
even if values are lower in the case of the transfer graph,
the two networks show a similar trend in the number of new
nodes, which reaches a certain degree of stability after initial
oscillations. A difference between the evolution of the graphs
emerges when observing Fig. 2b, approximately after one
month, the number of new transfer edges starts a decreasing
trend, while the trend of the follow graph is characterized by a
higher volume of operations while keeping wide fluctuations.

B. EvoMine

Here we illustrate the methodological and implementation
aspects of EvoMine, the algorithm for the extraction of graph
evolution rules.
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Fig. 2. Number of daily new nodes and edges. Plots on the same column represent the same dataset (NFTs - first column, Steemit - second column), while
plots on the same row represent either new edges or new nodes. In (a) and (b) the plots show how the number of new edges on a daily basis, respectively in
the NFTs and Steemit datasets. On the other hand, (c) and (d) depict the number of new nodes per day, respectively in the NFTs and Steemit datasets.

Topological constraint of rules. While other state-of-the-
art methods like GERM and LFR can capture only edge
insertions, EvoMine rules are richer because they consider also
edge deletions and node and edge relabeling. One peculiarity
of EvoMine rules is that the captured evolution takes place in
two consecutive timestamps so that every change developed by
the postcondition occurs the immediate next timestamp with
respect to the timestamp of the precondition’s edges.

In the context of graph evolution rule mining, it is common
to specify some constraints that describe the changes that the
methods promise to detect. An EvoMine rule is described as
r : (Gpre, Gpost), and the first topological constraint states
that Vpre, i.e. the set of nodes of Gpre, must correspond to
Vpost. The second condition is needed to ensure an evolu-
tion: a rule is valid if Epre ̸= Epost or ℓpre ̸= ℓpost. In
order to explain the last condition, a preliminary definition
is needed. Given a sequence of graphs GT

1 = (G1, . . . , GT )
with Gt = (V,Et, lt), a union graph GU (G

T
1 ) is a condensed

representation of a graph sequence, composed by the same
set of nodes (that remains constant in the sequence), and the
union of all edges sets Et, ∀t = 1 . . . T . The labels of nodes
and edges encode the temporal evolution by concatenating the
labels of all timestamps included. Let us consider an example:
Fig. 3b represents the union graph of the graph sequence in
Fig. 3a. The encoded label of upper-left node 122 tells that
the node had label 1 in the first timestamp, and label 2 in

the next two snapshots. In the same way, to the edge between
the two left nodes (nodes with labels 122 and 112) has been
assigned the label 1ϵ1, which indicates that the link that was in
E1, disappeared in the second timestamp and appeared again
in the third one. Once the concept of union graph is defined,
the third topological constraint is easily explained. In fact, the
union graph of (Gpre, Gpost) must be connected, to ensure
that the evolution rule captures a localized process.

The algorithm. EvoMine relies on a frequent connected
subgraph mining method (Gspan [29]), applied to a specific
mapping of the input graph sequence. The use of a frequent
connected subgraph mining algorithm ensures that the node
set and connectivity properties are achieved. In order to
guarantee the constraint about edge or label changes, the
method filters the resulting patterns according to the desired
property. Moreover, two types of support measure can be used:
(i) an embedding-based support (the well-known minimum
image-based support), and (ii) an event-based support. Here,
we focus on the second type of support.

Event-based support. The idea behind this novel definition
is that the support of a rule corresponds to the total number
of change events containing the rule itself. Before defining
properly the event-based support, it is necessary to explain
some preliminary concepts. In the event-based perspective, the
input of the frequent subgraph mining (FSM) algorithm is a set
of event graphs. Basically, an event graph is a subgraph of the
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Fig. 3. Union graph - toy example. (a) shows a three-timestamps graph sequence, while (b) represents its union graph, where the evolution of edges and
nodes is encoded in edges/nodes labels. In the edge labels, the number of characters indicates the length of the graph sequence. As for node label, each
element in position i indicates the attribute of the node in timestamp i (in this case 1 or 2, indicating the node being blue or yellow respectively). Meanwhile,
in the edge labels, ϵ or 1 indicate whether the edge is missing or not in the timestamp corresponding to the position of the character in the label.
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Fig. 4. Event graph - toy example. (a) shows two timestamps of a graph sequence, where the creation of the edge between nodes u and v is highlighted,
and (b) represents its union graph. (c) is the event graph associated with the creation of (u, v), that is the subgraph of (b) induced by the neighboring nodes
of u and v.

union graph GU (G
t+1
t ) induced by the event neighborhood,

i.e. the neighborhood of the node(s) involved in the node or
edge event. For example, given the snapshots t and t + 1 of
a temporal graph G as the one depicted in Fig. 4a, we obtain
its union graph GU (G

t+1
t ) reported in Fig. 4b. If we consider

the creation of the edge between u and v as the considered
event, the corresponding event graph is the subgraph induced
by u, v and its neighbors (depicted in Fig. 4c). The event-based
support σevent(r) of a rule r is the number of event graphs
in the event graph database that contains the union graph of
r as subgraph.

C. GER Profiles

The goal of this study is to give a thorough analysis of
the evolution rules obtained, rather than just focusing on
numerical observations (like the number of rules found). To
do so, we define a vector-based representation of the graph
evolution rules by which we can summarize the evolutionary
behavior of a network. The vector representation is called
GER profile. This vector indicates the distribution of each
kind of rule, so we first identify all the temporal subgraph
isomorphism classes. Note that we worked on the union graphs

of the resulting rules, so the isomorphism classes consider the
topological structure but also the temporal information. After
the identification of all the subgraph isomorphism classes, the
vector v(a) is computed for each application a of the EvoMine
algorithm. Specifically, each element of the GER profile is
defined as follows:

vi =
σevent(ri)∑n
j=1 σevent(rj)

(1)

where σevent(ri) is the event-based support of the rule ri and
n is the number of distinct GERs identified by EvoMine. Given
a temporal network, its GER profile represents a footprint of
its evolution as well as a compact representation of its growth.

Distance. As an application of the GER profiles, we can
exploit them to assess how the growths of two different
networks follow similar evolution rules. It is possible since the
GER profile is essentially a probability distribution over the
space of the graph evolution rules. In this case, to measure
how dissimilar the distributions are, we compute a pairwise
distance for all the applications, i.e. for all the temporal net-
works gathered from Web3 platforms. We use the Wasserstein
distance [34], also known as Kantorovich–Rubinstein metric



or Earth mover’s distance. The last name is related to the
analogy that sees each distribution as a unit amount of earth
and the metric as the minimum cost of turning one pile into
the other (amount of earth that needs to be moved multiplied
by the mean distance). Formally, the Wasserstein distance Wp

of two distributions u, v is defined as follows:

Wp(u, v) =

(
inf

π∈Γ(u,v)

∫
Rd×Rd

∥x− y∥pdπ
) 1

p

where Γ(u, v) is the set of all joint probability measures on
Rd × Rd whose marginals are u, v.

V. FINDINGS

We apply the EvoMine algorithm described in Section IV
to the datasets described in Section III. In this section we
analyze the results, giving a quantitative description of the
graph evolution rules found, studying the results on the single
datasets, and then comparing their GER profiles to highlight
common aspects and differences.

A. Quantitative descriptions of results

EvoMine was applied to the four datasets specifying the
directed nature of the graphs, a maximum number of 3 edges
per evolution rule, and the absence of edge/node colors/labels.
As regards the minimum support of patterns, we tried different
steps of support, starting by s = 150000 and then decreasing
until reaching a non-empty output. The chosen support values
are shown in Table II, that report also the number of rules
returned by the algorithm. Note that the output has been
filtered in order to obtain just meaningful rules, namely,
rules whose union graphs present edges with two distinct
timestamps, so that they really describe an evolution or a
growth process.

TABLE II
SUPPORT AND NUMBER OF RULES OBTAINED FOR EACH NETWORK.

Graph Support Number of GERs
Steemit Follow 50000 23
Steemit Transfer 30000 22
NFT Cryptokitties 150000 12
NFT OpenSea 10000 21

From this pure numerical observation of the number of rules
obtained, we can observe that the dataset about Cryptokitties
NFT market stands out with respect to the others with a lower
value of rules. In general, given the thresholds chosen for the
support, the number of rules describing the evolution of the
Web3 networks is relatively low.

We investigate more about the difference in the different
outputs by analyzing the intersections of the four sets of rules.
Fig. 5 shows a graphic representation of the four sets of results,
divided into two Venn diagrams to give a more intuitive idea.
From the diagram on the left, we deduct that Cryptokitties
results set is a subset of OpenSea one, that recursively is
a subset of the Steemit Follow network. However, Steemit
Transfer - a transfer network - shares almost the entire output

with OpenSea - a trading network, except for one pattern that
is not present in Steemit Follow either. Fig. 5 also illustrates
the patterns in the difference sets between Steemit Follow and
Steemit Transfer, i.e. (steemit follow \ steemit transfer),
and (steemit transfer \ steemit follow). Note that in this
work, we represent graph evolution rules as a unique temporal
pattern, discerning the timestamps of edges with a gray (for
timestamp t0) or green (for timestamp t1) color. From the
figure, we can observe that the rules present only in the
Steemit Follow graph (GERs in the orange rounded rectangle)
suggest an instant reciprocal behavior, while the pattern in the
Steemit Transfer graph (GER in the rightmost green circle) can
represent an expansion-oriented pattern. For a more detailed
explanation of the rule interpretation see Section VI.

B. GER Profiles

We apply the method described in Section IVC to get values
that can measure the differences between evolutionary behav-
iors in the four different datasets. We apply the Wasserstein
distance between pairs of GER profiles, obtaining the values
shown in the distance matrix depicted in Fig. 6. First, the
values are generally low, meaning that the distribution over the
different kinds of rules is rather homogeneous. This suggests
a first finding about the overall trait of the evolution processes
characterizing Web3 networks: the types and the frequency
of the evolution rules are quite uniform across the platforms.
That indicates that in our set of Web3 platforms, there is not
a manifest outlier that is driven by special evolution rules.
Second, a more specific analysis of the distance matrix shows
that Cryptokitties network is the one that differs the most from
the other ones, a further insight that has deserved a more
detailed discussion in Section VI.

VI. DISCUSSION

In this section, we are going to propose semantic inter-
pretations of some rules, starting from the distribution given
by GER profiles described in Section IV(C). Our discussion
mainly relies on Fig. 7, which represents a graphical represen-
tation of the GER profiles of the four temporal networks. The
first evident feature concerns the distance from Cryptokitties
GER profile with respect to others, which confirms the results
highlighted by the computation of the Wasserstein distance.
The other three vectors, especially the Steemit ones, are very
similar, with a few exceptions. In the following paragraph,
we deepen these differences and we propose a graphical
representation of the patterns that correspond to the indexes
where the distributions present noticeable differences.

A first evident difference concerns the first rule. In fact,
rule 0 is not present in the Cryptokitties results set, and it
corresponds to the closed triangle depicted in Fig. 8c and in
Fig. 1. This rule expresses the classical triadic closure process
typical of social networks where in the body we have an open
directed triad and in the head the formation of link between the
extremes of the open triad closes the triad, forming a directed
triangle. Its absence can be explained by the nature of the
network, i.e a trade network, and by the fact that only a single
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Fig. 5. Venn diagrams that show how the sets of graph evolution rules found in the four different graphs intersect with each other. From the left, the diagram
shows how Cryptokitties results are a subset of OpenSea ones that in turn are completely covered by Steemit follow output. The graphic in the middle shows
the two evolution rules that are present only in the Steemit follow set. The following diagram depicts the relation between OpenSea, Steemit transfer and
Steemit follow. Finally, the rule on the right represents the one present only in the Steemit transfer set.
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Fig. 6. Wasserstein distance matrix between GER profiles of each graph. The
distance matrix has been depicted as a heatmap, where the green intensity is
proportional to the distance.

type of NFT can be exchanged on this market, i.e. cats. In
fact, if there is only one type of object to sell/buy, it is very
uncommon to create a closed directed triangle of sales. On the
contrary, it is more likely to create chains of sell operations
or to have expansion-oriented behaviors, i.e. an account buys
more digital assets of the same type from different sellers.
This intuition is confirmed by the higher values associated with
rules from 8 to 13, they all embed an expansion mechanism of
the source node (node with zero in-degree). Fig. 8f shows an
example of this kind of expansion, where the most left node,
first creates a link towards the bottom node, and in the next
timestamp (green arrow), it expands to a third node, that in
turn expands to a fourth node. In this case, the rule indicates
that a new chain is creating in a new direction starting from
the source node. As for the triadic closure rule (Fig. 8c), it is
worth noting that, while in a social network as Steemit Follow
it is a quite expected rule, in trade and transfer networks such

as Steemit Transfer and NFT OpenSea is an unexpected trait
which, especially in a transfer network, may deserve further
investigations as it might be linked to malicious actions.

Even rules 6, 7, corresponding to Fig. 8d-e, present support
equal to zero in the Cryptokitties scenario. Here, the head
of the rule is chain of transfers between wallets or users
which originates from a single link (gray arrow) making the
resulting chain. The absence of this type of chains might be
related to a problem in the time granularity. Note that the
graphs are built aggregating all transactions performed on the
same day, and EvoMine algorithm can only catch evolution
rules between consecutive timestamps. So, the evolution rules
discovered highlight the evolution that happens on consecutive
days. These chains may happen and be frequent in the graph
but within the same day or on non-consecutive days. In fact,
rules 6 and 7 generate chains of sell actions, which are likely
in trade networks but they may actualize in more than a day,
especially when there is only a type of object to be sold.

Finally, rule 15 marks a checkpoint from which the distri-
bution of all graphs but Cryptokitties lose their common trend,
up to rule 20. For example, rules 17 and 20 (respectively
Fig. 8a-b) reflect an instant reciprocal behavior, because in
both cases there is an initial link between two nodes (gray
edge), and one of them creates a link with another node, that
reciprocates it in the same timestamp (two green arrows). The
cited rules are not frequent in the three economical/trading
networks (NFTs sales and Steemit Transfer), but are present in
the most common rules for the only social network considered
(Steemit Follow). This suggests that reciprocal behavior is less
common in transfer and economical networks with respect to
social networks, especially considering the daily granularity
of the outcomes.

VII. CONCLUSIONS

Blockchain-based platforms and online services are the
backbone of the Web3 paradigm, one of the candidates for
guiding the evolution of the future Web. Given the important



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Rules' indexes

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
Re

la
ti

ve
 fr

eq
ue

nc
y 

of
 r

ul
es

Subgraph profile vectors

OpenSea
CryptoKitties
Steemit Follow
Steemit Transfer

Fig. 7. GER profiles for each Web3 network. The plot shows, for each graph, the relative frequency of each kind of rule identified. Specifically, the x-axis
specifies the rules indexes (from 0 to 23), while on the y-axis the relative frequency of each rule over the entire graph is specified. In Section VI we discuss
rules with indexes 0, 6, 7, from 8 to 13, 17, and 20.

(a) (b) (c)

(d) (e) ( f )
t0
t1

Fig. 8. Examples of graph evolution rules found. Each graph is a condensed
representation of a graph evolution rule, where the gray edges belong to
the body of the rule (precondition) and the green edges belong to the head
(postcondition).

role Web3 platforms might have in the future, it is crucial
to understand which are their specific properties, how people
behave within these platforms, and how design principles
inspired by decentralization and token-based economy may

influence how people interact with each other and with the
platform functionalities. In the case of Web3 paradigm, re-
searchers may be facilitated in coping with these issues, since
the underlying blockchains publicly offer a large volume of
temporal and heterogeneous data capturing interactions that
occur in these techno-social systems. In this paper we have
dealt with a few types of the temporal networks generated
by Web3 platforms by disentangling their rapid growth. Our
methodology is based on methods rooted in frequent subgraph
mining. Specifically, by the state-of-art algorithm EvoMine,
we identify the most frequent graph evolution rules which
capture the essential paths of growth of different blockchain-
based platforms. In fact, methods based on subgraph counting
are mechanism-agnostic, i.e. they do not make any assump-
tion on the process generating the links, and return human-
readable and explainable description of the network evolution,
w.r.t. methods for dynamic graph representation learning. By
comparing the evolution rules of social network platforms
and asset trading services, we observe that GER profiles -
a vector-based representation of the network evolution - are
able to identify evolution mechanisms strictly related to the
nature of every single platform: whereas social and token-
transfer networks are characterized by rules which increase
network transitivity and reciprocity, NFT trading networks,
especially those specialized on a specific type of digital asset,
are driven by rules which form trading chains or expand node
neighborhood. From this perspective, an approach based on
GER profiles may be adopted to characterize the nature of
new Web3 networks, so to identify which kind of network we



are observing.
The findings and the methodology presented in this work

open up a few research directions which might be explored
in future works. From a methodological viewpoint, the graph
evolution rules returned by EvoMine are constrained to the
choice of the cut-point timestamp, making the tuning of
this parameter an important element for correctly identifying
significant evolution rules when the link formation process is
not stationary. Moreover, most of the methods for extraction
of evolution rules do not provide a statistical significance of
the outcomes. So, in this context, a definition of a proper null
model is mandatory to evaluate the significance of the rules.
On the other hand, as for the characterization of the growth
of Web3 platforms, future research directions may regard the
creation of an extensive dataset repository collecting temporal
and heterogeneous networks from blockchain-based platforms,
or a special focus on the stationarity of the evolution rules
along with the entire growth of the networks.

Moreover, results suggest that the methodology explained
can be leveraged in models that aim at studying the evolu-
tionary behaviors of dynamic networks. For instance, graph
evolution rules can be embedded to predict how a network will
evolve or can be adopted to inform data-driven models for net-
work evolution. Another possible employment of GERs could
concern the identification of change points in the temporal
version of the GER profile so as to identify whether changes
in the growth dynamics and in the mechanisms leading it are
occurring.
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